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Abstract

IMPORTANCE Despite the rapid growth of interest and diversity in applications of artificial
intelligence (AI) to biomedical research, there are limited objective ways to characterize the potential
for use of AI in clinical practice.

OBJECTIVE To examine what types of medical AI have the greatest estimated translational impact
(ie, ability to lead to development that has measurable value for human health) potential.

DESIGN, SETTING, AND PARTICIPANTS In this cohort study, research grants related to AI awarded
between January 1, 1985, and December 31, 2020, were identified from a National Institutes of
Health (NIH) award database. The text content for each award was entered into a Natural Language
Processing (NLP) clustering algorithm. An NIH database was also used to extract citation data,
including the number of citations and approximate potential to translate (APT) score for published
articles associated with the granted awards to create proxies for translatability.

EXPOSURES Unsupervised assignment of AI-related research awards to application topics
using NLP.

MAIN OUTCOMES AND MEASURES Annualized citations per $1 million funding (ACOF) and average
APT score for award-associated articles, grouped by application topic. The APT score is a machine-
learning based metric created by the NIH Office of Portfolio Analysis that quantifies the likelihood of
future citation by a clinical article.

RESULTS A total of 16 629 NIH awards related to AI were included in the analysis, and 75
applications of AI were identified. Total annual funding for AI grew from $17.4 million in 1985 to $1.43
billion in 2020. By average APT, interpersonal communication technologies (0.488; 95% CI, 0.472-
0.504) and population genetics (0.463; 95% CI, 0.453-0.472) had the highest translatability;
environmental health (ACOF, 1038) and applications focused on the electronic health record (ACOF,
489) also had high translatability. The category of applications related to biochemical analysis was
found to have low translatability by both metrics (average APT, 0.393; 95% CI, 0.388-0.398;
ACOF, 246).

CONCLUSIONS AND RELEVANCE Based on this study's findings, data on grants from the NIH can
apparently be used to identify and characterize medical applications of AI to understand changes in
academic productivity, funding support, and potential for translational impact. This method may be
extended to characterize other research domains.
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Key Points
Question Which applications of

artificial intelligence (AI) in biomedical

research could generate the most

translational value (ie, ability to lead to

development that has measurable value

for human health)?

Findings In this cohort study using

bibliometric analysis, 2 citation-based

metrics were used as proxies for

translational impact, and 75 unique

medical applications of AI were

identified from a set of 16 629 National

Institutes of Health awards related to AI,

using natural language processing.

Varied applications were found to have

high translatability, but bias against

applications in basic biochemical

analysis was evident.

Meaning These findings suggest that

National Institutes of Health award data

applications of AI in biomedical research

are not equivalent: some demonstrate

greater potential for translational impact

than others.
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Introduction

Artificial intelligence (AI) has the potential for transformational changes in health care. As early as the
1980s,1 it was understood that AI tools could eventually play a major role as expert consultants to
physicians by using insights from data that may not be deemed actionable by human interpretation.
From convolutional neural networks for imaging-based solid organ cancer screening2-4 to natural
language processing (NLP) to estimate the probability of diagnoses with data from the electronic
health record,5-7 the breadth of AI-powered technologies affecting our understanding of human
health and health care delivery processes has rapidly expanded in recent years.8

Yet despite the exponential growth in academic research involving AI in medicine,9 it remains
difficult to understand which applications have been associated with the greatest clinical impact and
which applications have the greatest potential for future impact. Maximizing clinical translation (ie,
ability to lead to development that has measurable value for human health) is a challenge for
AI-powered biomedical research with many hurdles limiting innovations, including prospective
studies, external cohort generalization, and difficulties integrating into existing clinical workflow.10-12

This problem has been described as the growing excitement around AI in health care despite limited
examples of ways AI has tangibly changed clinical practice.13,14

A potential means of characterizing translation of AI is through research funding and related
bibliometric data provided by the National Institutes of Health (NIH). As the world’s largest public
funder of health research, the NIH has among its mandates to “expand the knowledge base in
medical and associated sciences…and ensure continued high return on the public investment in
research.”15 Studies have used NIH grant data to investigate academic productivity and translational
value in biomedical research, from studying patent generation per unit of NIH funding to
investigating the contribution of NIH funding in new drug approvals.16,17 Another study analyzed NIH
funding for machine learning, but did not assess translational value.18 However, it has been reported
that unsupervised NLP (ie, automatic generation of document categories without a priori
knowledge) can segment NIH awards by topic similarity using text descriptions of the awards.19

By combining elements of each of these analyses, including translational value metrics, focus on
AI-related NIH awards, and unsupervised NLP, it may be possible to quantifiably address the issue of
which applications of AI have the greatest potential translational impact. In this cohort study, we
strictly define the scope of AI applications in health care using unsupervised categorization of NIH
awards and use bibliometric data provided by the NIH to investigate potential translational impact of
various applications.

Methods

Data Collection
The NIH Research Portfolio Online Reporting Tools Expenditures and Results (RePORTER) search
engine was queried for awards related to AI from January 1, 1985, to December 31, 2020, using a
query of AI-related terms (eTable 1 and eMethods in the Supplement, defining artificial intelligence).
Awards under activity codes T (training programs) and Z (intramural awards to NIH institutes) were
excluded from the analysis because these awards often do not detail a focused area of proposed
study. Subprojects, individual projects within multicomponent award applications, were also
excluded from analysis. In addition, the RePORTER query returns a collection of academic articles
that were produced in relation to the awards. These data include PubMed identification numbers,
which were used to separately query the NIH iCite platform20 for citation information related to
these articles. This cohort study involved nonhuman data and, per Common Rule 45 CFR
46.116(d)(4), was exempted from institutional review board review and the requirement for informed
consent. This study followed the Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) reporting guideline for cohort studies.
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Feature Extraction
eFigure 1 in the Supplement depicts the NLP pipeline. The title, abstract, and public health relevance
statement from each award were combined as the input for text analysis. Stop words, which are
common words with little semantic value (eg, the), were removed. Training features consisted of
lemmatized unigrams (1-word sequences) and bigrams (2-word sequences) vectorized with term
frequency-inverse document frequency (TF-IDF) weighting. Terms present across more than 10% of
the document corpus were excluded from the feature set. The feature set was further narrowed to
the 500 terms with the highest TF-IDF values summed across the corpus.

Unsupervised Clustering
The topic identification algorithm was implemented with k-means clustering—an unsupervised
machine learning algorithm that identifies clusters of related data points based on minimization of
geometric distance between points assigned to a given cluster. As such, awards were assigned to the
single topic that best characterized the text content of the award. The k-means algorithm was
implemented with minibatches,21 in which multiple iterations with randomly selected partitions of
the data set are conducted with each trial, with a batch size of 1024 and 100 iterations. The constant
denoting of the number of clusters (K) was empirically determined by monitoring the silhouette
score, a metric that reflects minimization of the mean intracluster distance and maximization of the
mean nearest-cluster distance, with modulation of K (eFigure 2 in the Supplement). After K was
selected, 50 training trials were conducted to create the final clusters, with the trial that maximized
the silhouette coefficient chosen as the representative output.

Cluster Validation
Each cluster created by the k-means algorithm was manually assigned a descriptive label based on
the words selected as cluster-characteristic features by the algorithm and the content of award
abstracts assigned to the cluster. Clusters with a silhouette score less than 0 (indicating poor
assignment of the constituent awards) were excluded from further analysis. To validate the cluster
topics, 2 of us (S.B. and R.C.) blinded to the awards’ cluster assignments manually assigned 200
randomly selected awards according to the k-means–defined topics. We also determined the fraction
of awards in select k-means categories that were assigned to similarly defined research, condition,
and disease categories, categories of research funding first generated by the NIH in 2008 (eMethods
in the Supplement, cluster validation).

Statistical Analysis
The overall award sample was characterized by comparing awards granted in 2008 and earlier with
awards granted in 2009 and later, which is an inflection point corresponding with the passage of the
Health Information Technology for Economic and Clinical Health (HITECH) act in the US.22 We
applied log-likelihood ratios of document frequency to the TF-IDF feature set to determine the 10
most comparatively enriched terms within the 2 time periods.

Two metrics were used to quantify the likelihood of translational clinical impact based on
articles associated with each NIH award. These metrics were applied to 3 collections of data: awards
grouped by the funding NIH institute (eg, National Cancer Institute, National Institute on Aging),
k-means–identified individual applications of AI, and applications grouped by general category. First,
we calculated annualized citations per $1 million of funding (ACOF). For example, an article receiving
100 citations during 5 years received 20 annualized citations. Second, we calculated the average
approximate potential to translate (APT) score for associated articles. The APT is a metric created by
the NIH Office of Portfolio Analysis that has been demonstrated to be predictive of the likelihood of
future citation by a clinical research article as an indicator of translation. Generated using a machine
learning approach, the APT score is based on a data set of more than 9 million published biomedical
research articles and outperformed academic experts in predicting clinical translation.23
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We also sought to characterize funding growth for each identified application of AI. AnJ
exponential fit was made of each cluster’s annual funding over the study period to evaluate the
estimated annual growth rate. In addition, to identify significant proportionality differences between
general application categories by funding mechanism (eg, R01), the distributions of awards by
funding mechanism were compared using exact binomial tests at significance level α = .05 with post
hoc Bonferroni correction. All values with uncertainty are reported with a 95% CI. All analyses were
conducted using Python, version 3.8 (Python Software Foundation). All code used to conduct
analyses in this study is publicly available.

Results

Study Sample
Table 1 describes the sample of awards, characterized as pre-HITECH and post-HITECH. A total of
16 629 awards were identified for inclusion in the study. The awards totaled $7 177 080 553 in
funding and had associated articles with an average APT of 0.422 (95% CI, 0.421-0.423) and ACOF of
301. The average APT significantly increased between the pre- and post-HITECH periods (0.390 vs
0.433; P < .001), but the ACOF decreased by 38% (from 444 to 275). The most enriched TF-IDF
features by log-likelihood ratio included lesion, physician, and interpretation pre-HITECH and ehr, big,
and deep post-HITECH. Overall funding grew from $17.4 million in 1985 to $1.43 billion in 2020
(eFigure 3 in the Supplement).

Translatability by NIH Institute
The ACOF and average APT among NIH institutes are shown in Figure 1 and eTable 2 in the
Supplement. Among institutes that granted more than 100 AI-related awards over the study period,
the National Center for Advancing Translational Sciences funded the most translatable awards by
ACOF (n, 392). Other high translatability institutes by ACOF included the National Institute of
Environmental Health Sciences (ACOF, 190) and the National Institute of Biomedical Imaging and
Bioengineering (ACOF, 157). The National Institute of Dental and Craniofacial Research (average APT,
0.445; 95% CI, 0.417-0.473) and National Eye Institute (average APT, 0.441; 95% CI, 0.426-0.455)
produced the most translatable awards by average APT. The Agency for Healthcare Research and
Quality and Office of the Director, institutes with research supportive missions, had the lowest
translatability by both metrics.

Applications of AI
Of the total 16 629 awards, 12 459 were sorted into 75 meaningfully descript applications of AI
applications in biomedical research (Table 2); the remaining awards were assigned to clusters with
silhouette scores less than 0 (ie, ill-defined topic assignments). The defined applications showed
frequent overlap with the research, condition, and disease categories (eTable 3 in the Supplement)
and fair to moderate agreement in award assignment with the manual raters (eTable 4 in the

Table 1. National Institutes of Health–Funded Research Applying Artificial Intelligence for the HITECH Act

Variable Pre-HITECH (2008 and earlier) Post-HITECH (2009 and later) Overall
No. of awards 1818 14 811 16 629

Total funding, $ 1 090 391 998 6 086 688 555 7 177 080 553

Annualized citations per $1
million funding

444 275 301

Average approximate
potential to translate
(95% CI)

0.390
(0.388-0.393)a

0.433
(0.432-0.434)a

0.422
(0.421-0.423)a

Enriched features base, prototype, artificial,
lesion, physician, intelligence,
mass, simulation,
interpretation, procedure

ehr, big, deep, asd, youth,
leverage, personalized,
trajectory, autism, inform

NA
Abbreviations: HITECH, Health Information
Technology for Economic and Clinical Health; NA, not
applicable.
a Significant at P < .001.

JAMA Network Open | Health Informatics Translatability of NIH-Funded Biomedical Research That Applies Artificial Intelligence

JAMA Network Open. 2022;5(1):e2144742. doi:10.1001/jamanetworkopen.2021.44742 (Reprinted) January 24, 2022 4/14

Downloaded From: https://jamanetwork.com/ on 07/17/2022

https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2021.44742&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2021.44742
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2021.44742&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2021.44742
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2021.44742&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2021.44742


Supplement). Cluster-characteristic terms (eTable 5 in the Supplement) and a list of awards
representative of each cluster (eTable 6 in the Supplement) were also described.

The clusters were further grouped by general application categories. Some categories were
clinically focused, such as neurologic disease, cancer, and mental health, and others were technically
focused, such as data types and model types. The estimated annual growth rate for NIH-funded AI
research overall was 0.274 (95% CI, 0.24-0.309), with the fastest growing application categories
including kidney disease (0.733; 95% CI, 0.637-0.829), neurologic disease (0.457; 95% CI,
0.429-0.485), and population health (0.419; 95% CI, 0.384-0.453) (Figure 2). Applications with low
estimated annual growth rate included training and education (0.099; 95% CI, 0.069-0.130),
biochemical analysis (0.109; 95% CI, 0.086-0.131), and vision (0.120; 95% CI, 0.100-0.140).

Applications by Funding Mechanisms
The 4 most frequent funding mechanisms in the award sample were R01 (investigator-initiated
research projects, 48% of all awards), U01 (research project cooperative agreements between the
funding NIH institute and investigators, 4.8%), R44 (small business innovation research grants,
4.2%), and R21 (exploratory/developmental research grants, 6.8%) (eTable 7 in the Supplement).
Application categories that tended to have a higher proportion of R01 grants include biochemical
analysis (53.3%), genetics (55.9%), and language and communication (59.0%). The cancer (10.5%)
and hepatic disease (19.5%) categories tended to have a higher proportion of U01 grants than other
categories (eTable 8 and eTable 9 in the Supplement).

Applications by Translational Impact Potential Metrics
Translatability was assessed at both the specific application (Table 2) and general category (Figure 3)
levels. General categories, such as liver disease (average APT, 0.459; 95% CI, 0.441-0.477), kidney
disease (average APT, 0.436; 95% CI, 0.422-0.451), and the electronic health record (average APT,
0.431; 95% CI, 0.424-0.439), had high translatability. Specific applications with high APT included

Figure 1. Translatability of National Institutes of Health–Funded Biomedical Research Applying Artificial Intelligence, by Institute
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Figure 2. Estimated National Institutes of Health Funding Annual Growth Rate, by Category
of Artificial Intelligence Applications
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Figure 3. Translatability of National Institutes of Health–Funded Biomedical Research Applying
Artificial Intelligence, by Category of Artificial Intelligence Applications
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interpersonal communication technologies (average APT, 0.488; 95% CI, 0.472-0.504) and
population genetics (average APT, 0.463; 95% CI, 0.453-0.472). The biochemical analysis category
(comprising drug discovery, other chemical compound characterization, mass spectroscopy, cell
signaling pathways, and small molecule interactions as applications) had the lowest translatability
(average APT, 0.393; 95% CI, 0.388-0.398).

General categories with high translatability by ACOF included environmental health (ACOF,
1038), the electronic health record (ACOF, 489) and knowledge frameworks (ACOF, 482). The
biochemical analysis category (ACOF, 246) was determined to be among the least translatable by
ACOF as well. At both the specific application and general category levels, applications related to
primary care practice were found to have the lowest translatability by ACOF. These areas of primary
care included diabetes (ACOF, 114) and metabolic syndrome (ACOF, 171) in the endocrine category
and population health screening in the population health category (ACOF, 98).

Discussion

By applying unsupervised machine learning techniques to text data from NIH-funded AI research
grants, we identified meaningful differences in NIH funding trends, funding types, and translational
potential for various applications of AI in biomedical research. There was an 80-fold increase in
annual NIH funding for AI over the 35-year study period. The terms enriched in the post-HITECH
subset of awards, ehr, big (ie, big data), and deep (ie, deep learning), reflect how the widespread
adoption of electronic medical records in the 21st century partially catalyzed this expansion by
facilitating access to large, multimodal data sets for the development of AI models.24 Although the
average APT increased between the pre- and post-HITECH periods, the ACOF decreased. This
discrepancy may be explained by a decrease in the number of breakthrough articles on biomedical AI
as the technologies have become more pervasive, but an increase in the potential for such
technologies to create clinical value.

Identifying applications of AI with the potential to produce high returns toward the quality and
efficiency of health care delivery is necessary. Some NIH institutes seem to have contributed more
toward this goal than others. In our analysis, the National Center for Advancing Translational
Sciences, National Institute of Dental and Craniofacial Research, National Eye Institute, and National
Institute of Biomedical Imaging and Bioengineering were identified as granting highly translatable
awards toward AI. The National Institute of Biomedical Imaging and Bioengineering and National
Institute of Dental and Craniofacial Research have successfully implemented academic-industry
partnerships to facilitate translation of AI technologies.25 Among the National Center for Advancing
Translational Sciences core technologies are machine learning methods for prediction of chemical
properties and NLP for extracting knowledge from data in rare diseases.26 The National Eye Institute
has funded the development of an AI imaging technology to detect retinopathy of prematurity that
was recently granted breakthrough status by the US Food and Drug Administration.27

Specific applications that were identified as having high translatable potential include
environmental health and interpersonal communication technologies. Interpersonal communication
technologies can aid with communication for patients with functional impairments through brain-
computer interfaces, hand sign analysis, and eye tracking, among other methods.28 Environmental
health AI can help elucidate how environmental toxin exposures contribute to the development of
disease and promote preventive policy and infrastructural changes.29,30

Applications focused on primary care settings seemed to have lower translatability. One such
application in diabetes was a proposal to generate policy recommendations that reduce preventive
care disparities in patients with diabetes using Medicare claims data and Markov decision process
analysis (eTable 5 in the Supplement, detecting, understanding, and reducing diabetes belt
preventive care disparities). The population health screening application included studies focused on
identifying cost-effective screening methods and developing personalized screening
recommendations for colon cancer, among others.31,32 Poor translatability could be because, in the
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primary care setting, there is an increased need for altered patient and health care professional
behavior for these types of AI technologies to make changes. Poor patient adherence to preventive
health care measures and poor health care professional adoption of novel screening tools are
well-recognized issues.33,34

Applications in the biochemical analysis category (protein structure and binding prediction,
drug discovery, other chemical compound characterization, mass spectroscopy, cell signaling
pathways, and small molecule interactions) were deemed less translatable by both metrics. Although
such applications have an intuitively longer path to clinical utility, these are nonetheless domains in
which discoveries can be made that transform our understanding of disease and result in novel
methods of diagnosis and treatment. Artificial intelligence to predict protein structure and functional
properties from amino acid sequence includes popular models such as AlphaFold (DeepMind), a deep
neural network.35 Analyzing RNA sequence patterns at the cellular level with machine learning
models has improved understanding of gene interactions and expression.36,37 Our analysis may be
biased against these types of applications in favor of technologies with more immediate potential for
translation.

Herein, we present, to our knowledge, a novel method for characterizing estimated biomedical
research impact that uses NLP and data from NIH-awarded grants. We applied this approach to
segment applications of AI in medicine and analyzed these applications with funding and citation
data. The software developed for this study is open-source, making replication of these results and
transfer of this method to other domains of interest straightforward. Other subjects could include an
analysis of awards related to health disparities to highlight the inequities deemed most pressing
based on academic interest or an analysis of what types of COVID-19–related research received the
most NIH funding over the course of the pandemic.

Limitations
This study has limitations. First, although our approach identified a number of recognized medical
applications of AI, it is hindered by the lack of a standardized definition of AI. Lack of a standardized
definition limits our ability to determine whether our query captured the most complete set of
AI-related NIH awards or whether awards were included with aims that could be deemed unrelated
to AI. Second, the k-means algorithm is an imperfect method for unsupervised clustering and there
was likely varying degrees of topic overlap between the generated clusters. Conversely, the awards
that were sorted into ill-defined clusters and subsequently excluded from the application analysis
may have been appropriately included in a described cluster or separated into smaller defined
clusters should a manual review have been performed. Third, citation counts are an imperfect proxy
for research impact: citation of an academic article may also be influenced by author reputation,
research domain, negative citations, and self-citations.38,39 Both citation-based translational impact
metrics used in this study are simply proxies for the true measure of biomedical research impact:
improvement in human health.

Conclusions

Findings from this study suggest that there are numerous applications of AI in biomedical research
that are receiving exponentially increasing amounts of grant funding from the NIH, demonstrating
varying degrees of estimated translational impact returns. Domains of biomedical research can be
categorized using NIH research grant data to understand differences in academic productivity,
funding support, and clinical translation.
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