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ABSTRACT

Magnetic resonance imaging and computed tomography from multiple batches (e.g. sites, scanners, datasets, etc.) are increasingly used alongside complex downstream
analyses to obtain new insights into the human brain. However, significant confounding due to batch-related technical variation, called batch effects, is present in this
data; direct application of downstream analyses to the data may lead to biased results. Image harmonization methods seek to remove these batch effects and enable
increased generalizability and reproducibility of downstream results. In this review, we describe and categorize current approaches in statistical and deep learning
harmonization methods. We also describe current evaluation metrics used to assess harmonization methods and provide a standardized framework to evaluate
newly-proposed methods for effective harmonization and preservation of biological information. Finally, we provide recommendations to end-users to advocate for
more effective use of current methods and to methodologists to direct future efforts and accelerate development of the field.

1. Introduction

Brain imaging acquired via magnetic resonance imaging (MRI) or
computed tomography (CT) from multiple batches, such as different
sites or scanners, has shown promise in providing increased sample
sizes for imaging-based neuroscience studies, prediction efforts, and
more (Bethlehem et al., 2022; Casey et al., 2018; Choudhury et al.,
2014; Di Martino et al., 2014; Horn et al., 2004; Marek et al., 2022;
Mueller et al., 2005; Poldrack and Gorgolewski, 2014; van Erp et al.,
2014; Van Essen et al., 2013). These multi-batch neuroimaging data
are known to suffer from non-biological, technical variability between
subjects from different batches, which we refer to as batch effects.
Batch effects can be due to differences in acquisition protocol, magnetic
field strength, scanner manufacturer, scanner drift, hardware imperfec-
tions, and more (Badhwar et al., 2020; Byrge et al., 2022; Cai et al.,
2021; Han et al., 2006; Jovicich et al., 2006; Shinohara et al., 2017;
Takao et al., 2014, 2011). These batch effects may explain, in part, chal-
lenges with reproducibility of neuroscience studies, generalizability of
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prediction algorithms, and incorporation of radiomics-derived imaging
biomarkers in clinical practice (Crombé et al., 2021; Fournier et al.,
2021; Martensson et al., 2020; Schwarz, 2021; Thieleking et al., 2021).
Notably, batch effects have been shown to be significantly easier to de-
tect than biological effects, both by statistical testing and machine learn-
ing algorithms (Bell et al., 2022; Fortin et al., 2018, 2017; Nielson et al.,
2018). Additionally, due to the complex nature of batch effects, tradi-
tional statistical techniques for adjusting for confounders, such as inclu-
sion of batch in a linear model as a mean effect, may be inadequate to
sufficiently account for batch effects.

There is also growing interest in using neuroimaging to evaluate new
treatments across a range of neurologic, psychiatric, and other clini-
cal trials (Cash et al., 2014; Dercle et al., 2022; Polman et al., 2006;
Saunders et al., 2016; Tariot et al., 2011; Tondelli et al., 2020; van Dyck
et al.,, 2023). While clinical trial treatments are usually randomized
within batches such that conclusions from unharmonized images are
asymptotically unbiased, prespecified approaches to account for known
confounders, including batch, allow for increased power and improved
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estimation of treatment effects (Hernandez et al., 2006, 2004; Kent et al.,
2009; Neuhaus, 1998; Optimising the Analysis of Stroke Trials (OAST)
Collaboration et al., 2009). This is especially important when random-
ized treatment assignments are not completely balanced within each
batch. Ultimately, in clinical trials where imaging biomarkers are mea-
sured across multiple centers, addressing batch effects allows for the
detection of smaller treatments effects while requiring fewer required
subjects, minimizing participant burden, and reducing costs.

In observational settings where batch effects are present, such as
when multiple small neuroimaging datasets are aggregated into one
larger sample, addressing batch effects is even more important to ob-
tain valid conclusions (Grech-Sollars et al., 2015; Keshavan et al., 2016;
Stonnington et al., 2008; Takao et al., 2014). In these settings, fail-
ure to account for the known confounding of batch effects may lead to
decreased power, less replicable findings, and potentially-biased find-
ings. Effective removal of batch effects has been shown to enable detec-
tion of otherwise-undetected biological effects as well as increase the
replicability of biological effects of interest in simulations of discovery-
validation study designs (Bashyam et al., 2022; Bell et al., 2022; Carré
et al., 2022; Fortin et al., 2017; Zhang et al., 2022; Zuo et al., 2021).
Additionally, when batch-wise differences in participant populations are
present, failure to address batch effects may result in biased conclusions
(Suttorp et al., 2015).

Various solutions have been proposed and implemented to ad-
dress this problem at different points in data collection and analysis
pipelines. For example, in study design, batch effects can be minimized
by collecting data from only one scanner, one manufacturer, one field
strength, one acquisition protocol, or some combination of these crite-
ria (Clarke et al., 2020; De Stefano et al., 2022; Thalainen et al., 2004;
Malyarenko et al., 2013; Meeter et al., 2017; Satterthwaite et al., 2014;
van de Bank et al., 2015; Vogelbacher et al., 2021). However, when
data collection is limited to only one batch, it is challenging to collect
large sample sizes, and design-based solutions cannot address batch ef-
fects in data that has already been collected (Harms et al., 2018). Addi-
tionally, even when acquisition properties or scanner manufacturer are
tightly controlled, batch effects can still arise due to residual differences,
such as hardware imperfections, site or operator characteristics, soft-
ware or hardware upgrades in long-running studies, or otherwise non-
controllable scanner properties (Jovicich et al., 2016; Shinohara et al.,
2017).

At other stages of the data analysis pipeline, such as during the im-
age pre-processing step, standardization of images using methods for
gradient distortion correction, bias field correction, and intensity nor-
malization can also reduce batch effects (Brown et al., 2020; Fortin et al.,
2016; Guan et al., 2022; Hellier, 2003; Jovicich et al., 2006; Nytl and
Udupa, 1999; Shinohara et al., 2014; Tustison et al., 2010; Wang et al.,
1998; Wrobel et al., 2020). These normalization methods act on inter-
subject variability without explicitly modeling batch effects, and as a
result, can only reduce batch effects that coincide with inter-subject
variability.

Additionally, some approaches account for batch effects using batch-
aware downstream statistical or machine learning analyses. For exam-
ple, data aggregation can be carried out in post-analysis through the
use of meta-analysis or mega-analysis techniques, where estimates of
interest are first calculated within batches and then analyzed jointly
(Jahanshad et al., 2013). In certain settings, the simple approach of
training models on large datasets across many batches can be consid-
ered, as these models are theoretically able to learn generalizable pa-
rameters that are invariant to batch, especially if the models are able to
explicitly incorporate batch status. This approach has been used in nor-
mative modeling settings (Bayer et al., 2022a; Bethlehem et al., 2022;
Kia et al., 2020; Kim et al., 2022). However, in many prediction or classi-
fication settings, complex machine learning algorithms are used that are
not able to learn batch-invariant decision boundaries; in these settings,
if outcome distributions differ across batches, models may incorrectly
learn to use batch effects to make predictions. Here, transfer learning
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approaches have been used (Aderghal et al., 2020; Chen et al., 2020;
Dar et al., 2020; He et al., 2021; Yang et al., 2019). In transfer learning,
instead of reducing batch effects in the data itself, these methods seek
to train deep learning models in a reference batch and then recalibrate
these models for prediction in new batches.

Finally, batch effects can be explicitly modeled for and addressed
in image pre-processing, such that raw data is mapped from multiple
batches into one common batch and the resulting harmonized dataset
can then be analyzed as if it originated from a common batch. We refer
to this process as image harmonization, which is the focus of this review.

This review is broadly organized into four sections. In the first and
second sections, we describe statistical harmonization methods and deep
learning harmonization methods, respectively. These two sections are
additionally subdivided based on whether methods are designed for ret-
rospective or prospective study designs. We define prospective study
designs as those where some subjects, commonly called “traveling sub-
jects,” are purposefully scanned across multiple batches within a short
time interval; these paired data across batches can then be used to fa-
cilitate harmonization of these batches at the time of analysis. In retro-
spective study designs, no such paired data are available. In the third
section, we discuss the evaluation of harmonization methods, including
the various domains under which harmonization should be evaluated as
well as specific tests to perform that evaluation. Finally, in the fourth
section, we provide recommendations to both end-users and methodol-
ogists. For end-users, we suggest harmonization methods for each data
type and study design based on ease of use, theoretical behavior, and
empirical validation. For methodologists, we provide guidance for fur-
ther work in harmonization, a standardized framework of evaluation,
and improved comparability of novel harmonization methods.

2. Literature search

We performed a literature search across the PubMed database us-
ing the following search term: (“magnetic resonance” OR “MRI”) AND
(“harmonization” OR “harmonizing” OR “harmonize” OR “harmonisa-
tion” OR “harmonising” OR “harmonise” OR “scanner effect” OR “site
effect” OR “batch effect” OR “batch correct” OR “domain effect” OR
“domain transfer” OR “technical variability” OR “style transfer”).

This search returned 583 candidate publications, as of January 17th,
2023, which were screened by title and abstract. Publications were in-
cluded if they proposed or validated a statistical or deep learning ap-
proach to image harmonization. Other literature the authors were aware
of, but were not found in this search, were also included as well as rel-
evant citations from included publications.

Notably, we identified five relevant review articles on the topic
(Bayer et al., 2022b; Bento et al., 2022; Da-Ano et al., 2020b; Pinto
et al., 2020; Stamoulou et al., 2022). Da-Ano et al., (2020b); Bayer et al.,
(2022b), and Stamoulou et al., (2022) described statistical methods;
Bento et al., (2022) described deep learning methods; and Pinto et al.,
(2020) described harmonization methods specifically for diffusion MRI.
In this review, we seek to add to this literature by unifying statistical
and deep learning methods for diffusion and non-diffusion MRI. Addi-
tionally, we describe common evaluation techniques for validating har-
monization methods and provide a framework for proposing and evalu-
ating new methods to direct future efforts in the field.

2.1. Statistical methods

Several overarching statistical models have been used for image har-
monization, including linear models, basis representations, latent factor
models, and others (Figure 1). In this review, we provide an overview of
methods for harmonization of imaging features across known batch la-
bels. These statistical methods can largely be divided into retrospective
and prospective harmonization methods. Retrospective harmonization
is performed after data collection and aims to mitigate biases due to
scanner with the available data. Prospective harmonization needs to be
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Fig. 1. Flowchart of statistical models orga-

— Basis representation

1 Empirical Bayes | - See Figure 2 nized by study design and underlying model
class. Asterisks indicate methods that have
been evaluated in more than one study.

— Linked ICA

Spherical harmonics*
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(Feature-level)
— CovBat* (PCA)
_ | Bayesian factor
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L— Latent factor modeling —
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— UNIFAC
TS-GLM*
Linear model
. TS-ComBat*
| | Prospective
(Feature-level)
Random effects model —— Longitudinal ComBat

integrated into the study design and often involves collecting repeated
measures for downstream analyses.

2.2. Retrospective harmonization

2.2.1. ComBat

Fortin et al., (2017) proposed that ComBat, a method first designed
for batch effect correction in genomics, could be used to harmonize MRI
images and derived features (Johnson et al., 2007). ComBat and its vari-
ous extensions, discussed below, have been widely used in neuroimaging
and are organized in Figure 2.

ComBat employs an empirical Bayes linear model framework, which
we briefly review. Let Yijor i=12,..., M, j=12,....n,v=12,....V
denote the V-dimensional vectors of observed data where i indexes site,
j indexes subjects within sites, n; is the number of subjects acquired
on site i, and V is the number of features. The observed data can be
measured across voxels, regions of interest, or any other parcellation of
the brain. Our goal is to harmonize these features across the M sites.
ComBat assumes that the data follow
Yijo =&y + X,-Tjﬁu +Yip + 6iv€ijo
where «, is the intercept, x;; is the vector of covariates, B, is the vector of
regression coefficients, y;, is the mean site effect, and §,, is the variance
site effect. ComBat assumes that the errors e;;, independently follow
e;j, ~ N(0,02). First, least-squares estimates &, and B, are obtained for
each feature. ComBat then assumes that the site effects follow the same
distribution across features. That is, ComBat assumes the mean site ef-
fects y;, follow independent normal distributions and the variance site
effects §,, follow independent inverse gamma distributions. The empir-
ical Bayes step estimates the hyperparameters via method of moments
using data across all features. The empirical Bayes point estimates y;,
and §; are then obtained as the means of the posterior distributions.
The ComBat-harmonized data are then obtained as
a,—xIB, -7
Ll +a,+x0p, )

ComBat _ Yijo
ijo - *
51'1)

ComBat was first applied to voxel-level fractional anisotropy (FA)
values from two diffusion MRI datasets where, within each dataset, all
subjects were imaged on the same scanner (Fortin et al., 2017). Subse-
quent studies validated ComBat on other neuroimaging features includ-
ing cortical thickness and functional connectivity (Fortin et al., 2018;
Yu et al., 2018). Since its publication and validation, ComBat has been
widely validated and used in the field of MRI imaging (Acquitter et al.,
2022; Barth et al.,, 2022; Bourbonne et al., 2021; Campello et al.,
2022; Castaldo et al., 2022; P. Chen et al., 2022; A. Crombé et al.,
2020; Dai et al., 2022; Haddad et al., 2022; Ingalhalikar et al., 2021;
Leithner et al., 2022; Liu et al., 2022; Luna et al., 2021; Meyers et al.,
2022; Onicas et al., 2022; Orlhac et al.,, 2021; Pagani et al., 2023;
Radua et al., 2020; Saint Martin et al., 2021; Verma et al., 2019;
Wengler et al., 2021; Whitney et al., 2021; H.M. 2020; Xia et al., 2022,
2019; Zavaliangos-Petropulu et al., 2019).

ComBat was also shown to be effective in magnetic resonance
spectroscopy, and its applications to radiomics have been recently re-
viewed (Bell et al., 2022; Da-Ano et al., 2020b). To study its robust-
ness, analyses have evaluated how ComBat behaves at various sample
sizes (Parekh et al., 2022) and validated ComBat correction against
correction based on traveling phantoms (Treit et al., 2022). ComBat
has been recommended to use for harmonizing large-scale open-source
neuroimaging datasets, such as the UK Biobank (Bijsterbosch et al.,
2020; Bordin et al., 2021), ABIDE (Horien et al., 2021), ENIGMA
(Hatton et al., 2020; Radua et al., 2020), ADNI (Ma et al., 2019), and
ABCD (Hagler et al., 2019; Marek et al., 2019) datasets. Limitations
of ComBat have been previously described in the field of genomics
(T. Lietal., 2021; Nygaard et al., 2016; Zindler et al., 2020). These limi-
tations are described in-depth in the “Recommendations for End-Users”
section of the Discussion.

2.2.2. ComBat extensions

Extensions of the standard ComBat model have sought to
relax certain model-based assumptions. Many of these methods
and their methodological details are covered in a recent review
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Fig. 2. Flowchart of ComBat-based models or-
ganized by study design and underlying model
class. All models presented in this figure per-
form feature-level harmonization in retrospec-
tive settings. Asterisks indicate methods that
have been evaluated in more than one study.

— ComBat*

—  ComBat-GAM*

GMM-ComBat*

— Standard study design—]

Multiple batch
variables

Empirical Bayes —

Unknown batch
variable

— Longitudinal ComBat*

— Unique study design —

— D-ComBat*

(Bayer et al., 2022b). One popular extension is ComBat-GAM, which al-
lows for preservation of non-linear covariate effects through use of the
generalized additive model (GAM) (Pomponio et al., 2020). Such esti-
mation of non-linear covariate effects has been shown to be necessary in
certain data settings, such as in diffusion MRI (Cetin-Karayumak et al.,
2020b). Another model-based extension incorporates Gaussian mixture
models (GMM) into GMM-ComBat to account for multimodal feature
distributions (Horng et al., 2022b).

Other extensions of ComBat retain the original model but modify
its construction and estimation. A recent study used a fully Bayesian
approach with Monte Carlo sampling in the ComBat model for estimat-
ing posterior distributions and found that fully-Bayesian ComBat could
provide more accurate harmonization results and unconstrained pos-
terior distributions compared to the standard Empirical-Bayes ComBat
model (Reynolds et al., 2022). B-ComBat and BM-ComBat estimate site
parameters via bootstrapping and allow for robust harmonization to
the pooled feature distribution or a reference batch, respectively (Da-
Ano et al., 2020a). TL-ComBat provides an algorithm for applying Com-
Bat parameters learned on training data to new subjects from a known
batch (Da-Ano et al., 2021). Another study found that applying intensity
normalization via RAVEL followed by ComBat provides greater removal
of batch effects (Eshaghzadeh Torbati et al., 2021).

ComBat has been adapted to various study designs. In longitudinal
studies where subjects may be imaged one or more times, Longitudi-
nal ComBat accounts for intra-subject correlation by incorporating ran-
dom effects into the model (Beer et al., 2020). The ComBat framework
has also been independently extended by two groups to work in a dis-
tributed data setting via Decentralized ComBat/Distributed ComBat (D-
ComBat), where data is collected across multiple sites but data-privacy

— B/BM-ComBat*

- TL-ComBat

— ComBatPC

— OPNested ComBat*

— AutoComBat

—  NeuroHarmony

concerns only allow summary statistics from each site to be shared
(Bostami et al., 2022b; A. A. Chen et al., 2022b). Many of the above
ComBat extensions have been externally validated and used in applied
studies (Bostami et al., 2022a; Richter et al., 2022; Saponaro et al., 2022;
Singh et al., 2022; Sun et al., 2022; Tafuri et al., 2022).

Finally, methodologists have extended the ComBat model to settings
where batch status could be defined by multiple batch covariates, or
an unseen batch must be harmonized to a set of known batches. Com-
BatPC proposed that secondary batch variables to remove could be mod-
eled as additional mean effects in the ComBat model, while the primary
batch variable remained in the model as both a mean and variance ef-
fect (Wachinger et al., 2021). Additionally, borrowing from the field
of genome-wide association studies (GWAS), they showed that includ-
ing first principal component as one of the secondary batch variables
could capture unobserved subpopulations and therefore improve har-
monization performance. Applicable to similar settings, OPNested Com-
Bat, an extension of Nested ComBat, learns an optimal order for cor-
recting multiple batch variables and then performs iterative correction
for each batch variable individually via the ComBat or GMM-ComBat
model (Horng et al., 2022b; Horng et al., 2022a). AutoComBat sidesteps
the issue of multiple batches by clustering subjects into automatically-
identified batches, implicitly learning which combinations of metadata,
such as image acquisition tags or image summary statistics, best define
batch status before applying the standard ComBat model (Carré et al.,
2022). For settings where an unseen batch must be harmonized to a
set of known batches, NeuroHarmony has also been proposed to learn
to predict appropriate ComBat parameters for correcting the unseen
batch using scanner-associated image quality metrics (Garcia-Dias et al.,
2020).



F. Hu, A.A. Chen, H. Horng et al.

2.2.3. Basis representation

Several harmonization approaches represent the original data using
basis vectors or functions estimated from the data then remove batch ef-
fects from the representation. Compared to methods that treat features
individually, basis representations can capture more complex batch ef-
fects and enable harmonization while preserving joint structure among
features. The basis chosen varies depending on the imaging modality but
includes principal components, independent components, and spherical
harmonics.

Correcting Covariance Batch Effects (CovBat) performs multivariate
harmonization by projecting residuals from ComBat onto their princi-
pal component axes and applying batch-specific shifts in the principal
component space. (A. A. Chen et al., 2022a). This study was the first
to show that batch effects are present not only in individual features,
but also in the covariance structure between features. CovBat first em-
ploys standard ComBat to globally shift and scale each feature, but ad-
ditionally harmonizes in the principal component space to shift batch-
specific covariance matrices towards the global covariance matrix. Cov-
Bat was shown to outperform existing harmonization methods in both
multivariate statistical evaluations and prediction-based machine learn-
ing metrics in cortical structure measurements from the ADNI (A. A.
Chen et al., 2022a). In functional connectivity harmonization, CovBat
was shown to more effectively harmonize community structure, when
compared to ComBat, in sites from the iSTAGING consortium as well
as based on information theoretic metrics in the ABIDE, IMPAC, and
ADHD-2020 studies (A. A. Chen et al., 2022c¢; Roffet et al., 2022). Cov-
Bat has also been shown to remove batch effects in the cortical and
volumetric measures in the ENIGMA study and diffusion tensor imaging
features from the ADNI study (Lariviére et al., 2022; Sinha et al., 2021;
Thomopoulos et al., 2021).

Independent component analysis (ICA) has been a widely used data-
driven approach to identify and remove structured noise components,
such as head motion-related, physiological, and scanner-induced noise,
from fMRI signals (McKeown et al., 2003; Mckeown et al., 1998). Specif-
ically, one study (Feis et al., 2015) used the Functional Magnetic Res-
onance Imaging of the Brain Centre’s (FMRIB’s) ICA-based X-noiseifier
(FIX, Griffanti et al., 2014; Salimi-Khorshidi et al., 2014) implemented
in FMRIB’s Software Library (FSL) to reduce scanner-related effects in
resting-state networks (RSNs). This study found that ICA-based FIX was
useful to remove separate noise components in individual subjects’ ICA,
but it cannot deal with hardware differences in sensitivity to RSNs (in
relation to configurations) or RSN spatial variability (in relation to head
coils). Additionally, ICA-based FIX cannot remove scanner-related dif-
ferences in the magnitude of the BOLD effect. A recently developed
linked ICA method was shown to outperform standard general linear
model and ICA in removing batch effects from multimodal MRI data col-
lected on the same scanner, but with hardware and software upgrades
and different acquisition parameters. Linked ICA used data fusion of
multiple MRI modalities to identify and remove scanner-related noise
components in multimodal spatial maps. It has yet to be shown whether
linked ICA is efficient for removing batch effects from data collected
from different scanners.

For diffusion tensor imaging (DTI), voxel-wise signal intensity can
be represented in a spherical harmonics (SH) basis, which is an or-
thonormal basis for functions defined on a unit sphere. Projection of the
original intensities into the SH basis yield rotation invariant spherical
harmonic (RISH) features. Harmonization from a target batch to refer-
ence batch has been proposed by representing complex batch effects as
mean shifts in RISH features, often referred to as RISH harmonization
(Mirzaalian et al., 2015). Extensions of the RISH harmonization method
have been proposed (Cetin Karayumak et al., 2019; Mirzaalian et al.,
2018; Mirzaalian et al., 2016) and covered in a recent review (Pinto
et al., 2020). Recent studies have compared statistical and deep learn-
ing SH-based harmonization methods, finding that the methods effec-
tively mitigate batch effects but vary in performance on different metrics
(Ning et al., 2020; Tax et al., 2019). A recent study found that RISH har-
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monization outperformed ComBat for preservation of biological effects
in large-scale multi-center studies (de Brito Robalo et al., 2022, 2021).
RISH harmonization has also been validated in traveling subjects stud-
ies (De Luca et al., 2022; Ning et al., 2020) and several major studies
(Cetin Karayumak et al., 2019; Cetin-Karayumak et al., 2020a).

2.2.4. Latent factor modeling

Another approach to retrospective harmonization uses latent factors
to model biological or batch effects in order to separate wanted and
unwanted variation. A latent factor model was first used in Removal of
Artificial Voxel Effect by Linear regression (RAVEL) for neuroimaging
normalization to model technical variability as latent factors estimated
using a set of control voxels not associated with biological variables of
interest (Fortin et al., 2016). RAVEL assumes that the V x n matrix of
features Y follows

Y=px"+0ZT +E )

where X is the n X p matrix of known covariates, f is the V' X p matrix of
regression coefficients, Z is the n x b matrix of unwanted latent factors,
and @ is the V x b coefficient matrix associated with Z. For a subset
of voxels Y, where there is no association between the voxels and X,
an estimate of Z can be obtained by performing factor analysis on Y,.
Then, estimates for 6 are obtained by fitting separate linear regressions
for each voxel under the model in (2), and the RAVEL-corrected features
are obtained as YRAVEL =y — Z§T,

The model in (2) was adapted as a Bayesian harmonization method
by representing wanted variation through the latent factors, includ-
ing known batch indicators in the linear model, and yielding harmo-
nized low-dimensional features as the estimated latent factors (Avalos-
Pacheco et al., 2022). Their model extends (2) by including a known
nx (M — 1) batch indicator matrix B via

Y=pX"+yBT +02T + E 3)

where M is the number of batches and y is the V' x (M — 1) coefficient
matrix associated with B. In contrast to RAVEL, this model also allows
the variance of E to vary by batch. They develop a non-local spike-
and-slab prior to induce sparsity on the factor loadings 6. The authors
then develop an expectation maximization algorithm for estimation of
the posterior distribution Z, and the harmonized reconstruction are ob-
tained from the mean of the posterior. In an application to gene ex-
pression data, they demonstrate that their method performs dimension
reduction while adjusting for distinct covariance patterns across batches
and benefits downstream survival analyses.

The UNIFAC harmonization method proposes a generalization of
the latent factor model, allowing for flexible removal of multivariate
batch effects (Zhang et al., 2022). Their main assumption is that the
batch effects are low-rank and represented as matrix-valued shifts. Sim-
ilar to ComBat and CovBat, UNIFAC harmonization first fits a linear
model with known covariates and batch indicators, standardizes the
data to have homogenous variance, and obtains standardized data Y* =
[y Yz*; ;YA’}] where Yf denotes data from batch j, j = 1,2, ..., M. The
method then assumes that Y* follows

Y =R+ I} Iy + [61E 6, E; ... s 63 Eny]

where R* is p x n low-ranked latent structure, I* are low-rank latent
patterns associated with batch, E; are full-rank noise matrices with unit
variance, and §; capture batch-specific scale shifts. UNIFAC harmoniza-
tion estimates these latent patterns by optimizing a loss function with a
nuclear norm penalty, which yields low-rank structures.

The UNIFAC-harmonized data are defined as

UNIFAC _ ¢ p* & * _ pEo_ fx
Y = 8,R; +8(v; - Ry~ T7)

where § is the estimated population variance from the standardization
step. Unlike ComBat and CovBat, the UNIFAC harmonization method
can capture multivariate batch effects that differ across subjects within
the same batch. Compared to CovBat, UNIFAC harmonization can model
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batch effects that are not constrained to principal component directions.
The authors compare UNIFAC harmonization to existing methods in a
schizophrenia study conducted across three sites. They show that UNI-
FAC harmonization outperforms ComBat, CovBat, and several multivari-
ate harmonization approaches on reducing differences in covariance,
obscuring prediction of site, and statistical power in detection age-by-
disease interactions.

2.3. Prospective harmonization

2.3.1. Traveling subjects linear models

Typical multi-center neuroimaging studies collect separate subjects
from each study center, which leads to challenges in separating bio-
logical and technical variability. A recent study design addresses this
issue by recruiting a subset of participants to travel to every scanner
used in the study, often referred to as traveling subjects (Noble et al.,
2017). Subsequent studies demonstrated that linear models effectively
estimated and removed scanner-related biases from the traveling sub-
jects subset (Yamashita et al., 2019). Increasingly, this study design has
been employed in several large-scale multi-site studies (Hawco et al.,
2022; Tanaka et al., 2021).

In these traveling subjects studies, N subjects, are acquired mul-
tiple times across M scanners. Let Vijp» i=1,2,....M, j=12,...,N,
v=1,2,...,V denote the observed data where i indexes site, j in-
dexes subject, and v indexes feature. Furthermore, let z; denote a Q-
dimensional vector of participant factors, which can include indicators
for each participant, diagnosis labels, sample, or any other relevant la-
bel. The traveling-subject harmonization model, TS-GLM, assumes that
batch effects can be modeled as mean shifts within subjects across
batches (Yamashita et al., 2019). Notably, unlike many of the retrospec-
tive harmonization methods described above, TS-GLM does not model
batch effect as a scale component in the variance of the residuals. The
model is expressed as

_.T
Yijp =Z; Oy + Vv + €ijp

where 0, is the vector of regression coefficients, y,, is the mean site ef-
fect, and ¢;;,, are errors assumed to independently follow e;;,, ~ N (0, o2).
Depending on the choice of indicators in z;, this model can have many
more parameters than observations. Identifiability of the parameters in
this model requires constraints on the estimators 8, and ,,. In the sim-

ple case where z; is a N-dimensional vector of participant indicators,
M
the constraints are % GAW’ =0and Y 7, =0 for each v. Once estimates
=1 i=1
are obtained, the mqean site parameters y;, can be applied to any subject
acquired on scanner i, even those not included in the traveling subjects
dataset. This model has been applied and validated across multiple stud-
ies (Koike et al., 2021; Yamashita et al., 2021; A. 2020).

ComBat has been extended to the traveling subjects study design,
accounting for batch effects in the scale of measurements and leverag-
ing information across features in parameter estimation (Maikusa et al.,
2021). This traveling subjects ComBat (TS-ComBat) model is formulated
as

_.T
Yijp =Z; Oy + Yiv + 0iveijp

where §,, is the variance scanner effect. As in ComBat, the model as-
sumes the mean batch effects y;, follow independent normal distri-
butions and the variance batch effects §;, follow independent inverse
gamma distributions. Estimation also requires identifiability constraints
on 6, and 7,,. The batch effects are obtained as empirical Bayes point
estimates y; and & are then obtained as the means of the posterior dis-
tributions. Comparison of TS-ComBat and the model in Yamashita et al.,
(2019) showed that both models performed well in multiple harmoniza-
tion tasks, but TS-ComBat is superior in smaller sample sizes.
Limitations of TS-GLM and TS-ComBat restrict applicability to com-
mon scenarios. Both models require that sufficient subjects are scanned
on all scanners in order to ensure that batch effects are not confounded
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with biological effects. Furthermore, these models do not account for
time of scan, so any batch effects may also be driven by changes in imag-
ing measurements over time. Since participants may be lost to follow-up
and are acquired at multiple distant time points, these limitations are
often relevant and impact the results of harmonization.

2.3.2. Longitudinal ComBat

An alternative for harmonization in traveling subjects studies is Lon-
gitudinal ComBat, which flexibly models repeated measures across time
(Beer et al., 2020). Compared to other models, Longitudinal ComBat ef-
ficiently captures subject effects as random intercepts and incorporates
time of scan into the harmonization. While this method was originally
designed for longitudinal studies, it has recently been applied in a trav-
eling subjects study to effectively mitigate batch effects (Richter et al.,
2022).

Lety;;,(),i=1,2,....,M,j=1,2,...,N,v=12,...,V denote the ob-
served data where i indexes site, j indexes subject, v indexes feature, and
t is a continuous or categorical time variable. The Longitudinal ComBat
model is expressed as

yijv(t) =y + Xj(t)TﬁU + rlju + Yiv + ﬁiveijv(t)

where q,, is the mean of feature v at baseline, y;, is the mean scanner ef-
fect, 8;, is the variance scanner effect, x;(¢) is a potentially time-varying
vector of covariates, f, is a vector of regression coefficients, and 7,
is a subject-specific random intercept. The errors ¢;;,(1) ~ N(0,c?) are
assumed to be independent from the random intercepts #;,. ComBat as-
sumptions are placed on the mean and variance scanner parameters, and
estimation proceeds through standard mixed model estimation followed
by a modified empirical Bayes step.

3. Deep learning methods

In recent years, a wide range of deep learning methods have been
proposed as powerful and flexible tools to correct batch effects. These
methods have especially shown promise for harmonization of unstruc-
tured data, such as images themselves, and for harmonization jointly
across multivariate feature matrices. In the unpaired subject setting,
popular approaches have used unpaired image-to-image translation
frameworks as well as autoencoder networks designed to embed subjects
into batch-invariant latent spaces. In paired subject data, methods have
used specialized U-Net architectures adapted to imaging data as well
as autoencoder methods to estimate direct mappings from one batch to
another. Methods are categorized in Figure 3.

3.1. Retrospective harmonization

3.1.1. Cycle-consistency GANs (Image-level)

Zhu et al., (2017) proposed the cycle-consistent generative-
adversarial network (CycleGAN) to address the problem of unpaired
image-to-image translation. The goal of this network is to learn a
mapping between two image batches, A and B, using two generator-
discriminator pairs. One generator, G4, seeks to learn a mapping
G4(-) : A - B such that its corresponding discriminator, Dy, cannot
distinguish the distribution of images from G(A) from that of images
from B. Similarly, generator G and discriminator D, learn the in-
verse mapping Gg(-) : B — A. Finally, a cycle-consistency loss is in-
troduced as an additional constraint to push the network to pre-
serve image-level features, £ ., (G4, Gp) = E {|l Gp(G,(A) — All;} +
Eg{ll G4(Gg(B)) — B||;}. This cycle-consistency loss enforces that an im-
age translated from batch A to batch B and then back to batch A should
resemble the untranslated image. Thus, classical CycleGAN attempts
to minimize the following objective function: £,,,,(G4.Gg, Dg,D4) =
LGan(G 4, Dp, A, B)+ Loan(Gp, Dy, B, A) +aL., (G4, Gp), where a is
a hyperparameter controlling relative importance of the loss compo-
nents.
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In image harmonization, this architecture has been leveraged for un-
paired image-to-image translation in many contexts with minor addi-
tions to the original CycleGAN loss function and architecture (Dar et al.,
2019; Hognon et al., 2019; Kieselmann et al., 2021; Liu et al., 2020;
Sinha et al., 2021; Tixier et al., 2021; Zhao et al., 2019; Zhong et al.,
2020). Zhao et al., (2019) proposed surface-to-surface GAN (S2SGAN), a
variation of CycleGAN using spherical U-Net layers instead of standard
convolutional layers, in order to perform harmonization on subject-wise
cortical thicknesses projected to a spherical surface. Additionally, they
added a cycle-consistency correlation loss component to the original Cy-
cleGAN loss such that corresponding vertices between input and cycled
images are highly correlated. Dar et al., (2019) demonstrated that a Cy-
cleGAN network could generate T1-weighted images from T2-weighted
images, and vice versa. Hognon et al., (2019) and Tixier et al., (2021) de-
veloped a two-stage framework, where the original CycleGAN network
is first used with early stopping criteria to generate “pseudo-paired” data
and then a pix2pix network is used on this “pseudo-paired” data to learn
the final source-to-reference batch mapping. This two-stage framework
differs markedly from other CycleGAN-based approaches; the authors
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Fig. 3. Flowchart of deep learning models or-
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claimed that it allows for better preservation of content information in
their data setting where all reference batch subjects were controls while
a significant subset of source batch subjects had anatomical pathologies.
To validate the beneficial effects of CycleGAN on performance of down-
stream tasks, Liu et al., (2020) demonstrated that use of the standard Cy-
cleGAN model across a multi-batch dataset drastically increased the per-
formance of a fully-convolutional segmentation neural network trained
on reference batch images; however, they noted that post-harmonization
performance remained substantially lower compared to performance on
reference batch images.

Other adaptations of CycleGAN have imposed additional assump-
tions on the nature of batch effects — namely, that there should be
no distortions in anatomy across batches. Previous studies have de-
scribed distortions in anatomical features across batches, such as cor-
tical thicknesses (Fortin et al., 2018), so the validity of this assumption
depends on whether these previously described anatomical differences
are actually due to true distortions or instead due to errors in auto-
mated segmentation because of batch-wise intensity differences. For ex-
ample, Kieselmann et al., (2021) added a cycle-consistency geometric
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loss, where binary geometric masks (1 inside the brain and 0 otherwise)
generated from input and cycled images are encouraged to be similar.
Meanwhile, Chang et al., (2022) proposed semi-supervised harmoniza-
tion (SSH), a variation of CycleGAN that uses a two-stage framework
to perform harmonization in a manner similar to intensity normaliza-
tion. In the first stage, the standard CycleGAN model is used to generate
an initial harmonized image for each raw image. In the second stage,
these initial harmonized images are used along with raw data to per-
form intensity normalization — that is, histogram matching is used to
match each raw intensity to its corresponding initial harmonized inten-
sity. Finally, to generate the output harmonized image, the raw intensi-
ties within the raw image are swapped out for their corresponding initial
harmonized intensities. Thus, SSH can maintain the high resolution and
anatomical fidelity of the raw image, but with brightness and contrast
characteristics of the desired reference batch. The authors showed that
SSH was able to improve the performance, when compared to ComBat
and standard CycleGAN, of a cervical cancer classifier that was trained
on subjects from the reference batch and tested on subjects from the
source batch that were harmonized to the reference batch. The authors
did not compare SSH performance against standard intensity normaliza-
tion techniques (Nytl and Udupa, 1999; Shinohara et al., 2014).

3.1.2. Attention-Mechanism GANs (Image-level)

A further extension of the CycleGAN network called attention-guided
GAN (AG-GAN) incorporated attention guidance in both generators and
discriminators, where the network is able to learn which parts of an
image are most different between batches and focus its attention on ac-
curately translating these parts (Tang et al., 2019). It has been applied to
the image harmonization setting with minimal alterations (Sinha et al.,
2021). This model leverages the same cycle-consistency idea as Cycle-
GAN, but additionally seeks to decompose generated images into an
attention-weighted linear combination of the input image and a restyled
image, such that voxels that do not differ between batches can be left
mostly unchanged. The attention-guided discriminators then focus on
the regions of the generated image that are most artificial. The AG-
GAN loss function consists of the original CycleGAN loss with additional
attention-guided adversarial components, a pixel-wise loss to minimize
unnecessary pixel-wise changes, and an attention mask loss to prevent
attention masks from globally saturating to 1. Thus, in AG-GAN, the
regions of generated images that are similar between batches A and
B are largely reconstructed from the input image, allowing generator-
discriminator pairs to focus on style transfer in the regions that differ.
Other CycleGAN-based models that include attention mechanisms have
also been introduced by Selim et al., (2022) and Gutierrez et al., (2023).

3.1.3. Style-conditional GANs (Image-level)

While CycleGAN-based methods perform style transfer conditional
only on an input image, adaptations to the CycleGAN framework allow
for GAN-based style transfer that is conditional on both an input im-
age as well as a desired output style (Bashyam et al., 2022; Choi et al.,
2020; Fetty et al., 2020; Karras et al., 2019; Liu et al., 2021; Tian et al.,
2022; Yao et al., 2022). These methods implicitly learn continuous style
features such that subtle batch features, like different acquisitions pa-
rameters within the same manufacturer, can potentially be corrected.
Additionally, since these models include no explicit constraints to dis-
entangle batch from non-batch style features, such as age and sex, non-
batch styles may also be incorporated into style representations. No-
tably, style-conditional GANs share key characteristics with other broad
classes of methods described in this review; these methods incorporate
cycle-consistency loss components, similarly to CycleGAN, and also at-
tempt to learn a latent representation of data where content and style in-
formation are disentangled, similarly to autoencoder-based models dis-
cussed further below.

Qin et al., (2022) draw strongly from the original CycleGAN frame-
work and perform harmonization between two batches using two paired
style-conditional GANs, which they call style transfer conditional GAN
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(ST-cGAN). In each pair, an encoder takes two images as input — one im-
age is encoded into a content representation while the other is encoded
into a style representation. Then, these two components are fused via
adaptive instance normalization (AdaIN, Huang and Belongie, 2017) by
the generator to create an output with the content of the first image
and style of the second. The loss function involves the cycle-consistency
and paired discrimination loss components along with an additional con-
straint of identity loss, which enforces that “harmonization” of an image
directly to its own true batch should reproduce itself.

Meanwhile, other style-conditional GANs deviate more from the Cy-
cleGAN. One such model, StyleGAN, was proposed by Karras et al.,
(2019) and later applied to imaging data by Fetty et al., (2020) and
Liu et al., (2021). StyleGAN consists of one style-mapping network, one
generator, one image discriminator, and one style discriminator. First,
StyleGAN uses the style-mapping network to create a style representa-
tion from a random-noise latent space. Then, the generator encodes an
image, combines it with this style representation using adaptive instance
normalization, and attempts to generate a new image in that style, such
that the image discriminator cannot tell the image is generated and the
style discriminator can recover the input style representation. Since this
generative process is under-constrained, a cycle-consistency loss com-
ponent is added as well as a style diversification loss component. Thus,
the network learns to sample diverse styles, generate realistic images in
those styles that retain content, and implicitly learn the original style of
each image.

A similar concept is employed by StarGANv2 and has been used
in the multi-batch image harmonization setting (Bashyam et al., 2022;
Choi et al., 2020). This model incorporates a style encoder that directly
learns style representations from training images, in contrast to the
StyleGAN mapping network which generates style representations from
noise and then associates these randomly-generated style representa-
tions with relevant images. Once style representations as well as realistic
image generation are learned by StarGAN, style transfer can be achieved
by combining content representations with desired style representa-
tions. Again, both cycle-consistency and style diversification loss compo-
nents are used. Harmonization using this model has been shown to im-
prove out-of-sample performance of an age-prediction network trained
in the reference batch. A model based on similar style-disentangling
mechanisms has been shown to improve the performance of a 3D seg-
mentation network trained on the reference batch when applied to
source batch images (Yao et al., 2022). Notably, like autoencoder-based
models, StyleGAN, StarGANvV2, and the model by Yao et al. rely on one
common generator that is able to take any content representation and
combine it with any style representation.

3.1.4. Autoencoder models (Feature-level)

In 2015, Sohn et al., (2015) introduced the conditional variational
autoencoder (CVAE) in order to generate new data conditional on ad-
ditional covariates. This model can be best understood through its pre-
decessor, the variational autoencoder (VAE), which in turn, builds on
the standard autoencoder, a simple neural network architecture that
seeks to learn a non-linear, low-dimensional representation of input
data that contains sufficient information for reconstruction (Kingma and
Welling, 2014). The VAE architecture and loss function, discussed be-
low, allow for additional constraints compared to the standard autoen-
coder and seek to improve organization of the latent space as well
as reduce potential for overfitting. In this model, the encoder seeks
to embed the input data into a lower-dimensional latent distribution,
q(z|a), which approximates some pre-specified “prior” distribution, p(z).
In practice, p(z) is usually chosen to be the standard multivariate nor-
mal distribution. The probabilistic decoder, p(a|z) then takes a random
sample from this distribution, Z ~ ¢(z|a) and attempts to reconstruct
the data using this sample. The VAE seeks to minimize the loss func-
tion £,,,,; = E(|| a — p(a]2)|l,) + KLD(g(z|a), p(z)), where KLD(, |-) is the
Kullback-Leibler divergence between the latent distribution and prior
distribution. The reconstruction loss component encourages latent-space
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distributions to efficiently retain information, while the Kullback-Leibler
divergence component creates a trade-off that encourages representa-
tions to coexist around the origin as well as inject noise. Together, these
constraints organize the latent space such that nearby points produce
similar reconstructions.

CVAE builds on the VAE architecture by concatenating additional
covariates, ¢, onto the inputs for both the encoder and the decoder in
order to condition the latent space on these covariates. In this model,
since the decoder has necessary information from additional covariates
readily available for reconstruction, the encoder no longer benefits from
encoding covariate-dependent information in the latent space.

At the feature-level, a number of methodologies have harnessed
CVAE ideas to learn a latent-space representation that is independent
of the imaging batch and the corresponding batch-conditioned encoder-
decoder pair (An et al., 2022; Moyer et al., 2020). Then, these meth-
ods perform harmonization by first encoding samples into the batch-
invariant latent space using each samples’ actual batch, and then decod-
ing those latent-space representations using the desired output batch.

Moyer et al., (2020) leveraged a deep learning model using the CVAE
structure to perform unsupervised image-based harmonization on dif-
fusion MRI images. First, this model maps diffusion-weighted imaging
(DWI) signal for each voxel to a vector of spherical harmonics repre-
sentations. Then, for each voxel, spherical harmonics vectors from itself
and its six immediate neighbors are concatenated along with the batch
covariate and fed into the CVAE to learn the batch-invariant latent repre-
sentation. The loss function consists of the standard VAE loss; a recon-
struction error for the projection of spherical harmonics vectors back
into DWI space; an adversarial loss for detecting batch on the recon-
struction as estimated by a discriminator; and a penalty on the mutual
information between the latent space and batch, enforced via the sum of
pairwise Kullback-Leibler divergences between latent-space representa-
tions.

An extension of this model, called goal-specific conditional varia-
tional autoencoder (gcVAE), has been proposed to perform harmoniza-
tion on image-derived features that is explicitly aware of desired down-
stream applications - in this case, the prediction of Alzheimer disease
diagnosis and Mini-Mental State Examination (MMSE) scores (An et al.,
2022). gcVAE seeks to trains two neural networks independently - first,
a CVAE model is pre-trained to learn a conditionally-independent latent-
space representation and the corresponding conditional decoders. Addi-
tionally, a generic feed-forward prediction network is trained on ref-
erence batch data to predict Alzheimer disease diagnoses and MMSE
scores from unharmonized features, and its weights are frozen. Finally,
data from both batches are harmonized through the pre-trained CVAE
and then fed through the frozen prediction network; the loss function
for this step seeks to minimize the error in prediction network outputs.
This loss is used along with a small learning rate and limited training
epochs to fine-tune the CVAE model to retain information relevant to
diagnosis and MMSE prediction in the harmonized reconstruction.

3.1.5. Autoencoder models (Image-level)

In image-level harmonization, methods have used ideas from the
CVAE as well as from the standard autoencoder to disentangle content
information from batch and other style features (Cackowski et al., 2021;
Cao et al., 2022; Fatania et al., 2022; Zuo et al., 2021). These methods
seek to decompose images into low-dimensional style-invariant content
representations in the encoding step, and then in the generation step,
inject these content representations with style information.

Zuo et al., (2021) introduced a harmonization method named Con-
trast Anatomy Learning and Analysis for MR Intensity Translation and
Integration (CALAMITI) that uses similar tools to CVAE as well as style-
conditional GANs. This model was based on previous work by the same
group (Dewey et al., 2020). However, CALAMITI additionally lever-
ages the fact that neuroimaging subjects are often imaged under multi-
ple contrasts, such as T1-weighted and T2-weighted acquisitions. These
intra-subject contrast pairs can be thought to share identical anatomi-
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cal content with differing styles. Meanwhile, intra-batch images — those
taken under the same contrast and scanner, but on different subjects —
can be thought to share identical style but differing anatomical content.
CALAMITI uses these two sets of pseudo-paired data to train a content
encoder, style encoder, generator, and batch discriminator. Content rep-
resentations within intra-subject pairs are constrained to be interchange-
able and independent of batch as assessed by the batch discriminator.
Style representations necessary to reconstruct a given image are ob-
tained entirely from a random intra-batch image with no shared content.
Harmonization is then performed by providing a trained decoder with
image-specific content representations along with style representations
from the desired reference batch. Finally, to account for the 3D struc-
ture of the brain despite using 2D slices, this procedure is performed in
axial, coronal, and sagittal directions and the three “directional” brain
volumes are unified into a final image through a 3D fusion network,
an idea borrowed from DeepHarmony, described below (Dewey et al.,
2019).

CALAMITI has been validated by Shao et al., (2022), who showed
that training a 3D thalamus-segmentation network on images harmo-
nized to the reference batch resulted in better out-of-sample perfor-
mance on true images from the reference batch when compared to the
same segmentation network trained on unharmonized images. Mean-
while, in-sample performance of the network did not decrease after har-
monization, suggesting minimal degradation of anatomy. Additionally,
the direct predecessor to CALAMITI, proposed by Dewey et al., has been
shown to allow for improved harmonization, when compared to Cycle-
GAN, of diffusion MRI across multiple batches as well as simultaneously
allow for estimation of multi-shell diffusion MRI from single-shell data
(Dewey et al., 2020; Hansen et al., 2022).

Inspired by the use of imaging data structure in CALAMITI, ImU-
nity sought to apply these ideas to the harmonization of not only
batches available in the training dataset, but also unseen batches
(Cackowski et al., 2021). At each training iteration, ImUnity takes two
random slices, S| and 5,, from the same image as input, such that the
slices can be thought to have different content but share the same style.
Next, both S| and S, are modified to S| and 7, respectively, using
the gamma transformation, an image processing function that changes
the relative intensity of gray colors. Slice S, is then embedded into a
latent content representation, slice S; is embedded into a style repre-
sentation, and these content and style representations are used to re-
construct slice SIV, which should have the same content as S, and same
style as S; . Additionally, this model applies both a batch discrimina-
tor and optional biological information classifier to the latent content
representation which serve to promote the removal of batch informa-
tion and maintenance of biological information, respectively. Through
this process, content information can be disentangled from style in a
self-supervised manner without additional imaging contrasts, and im-
age harmonization can be carried out by inputting source batch slices
to the content encoder and reference batch slices to the style encoder.
If unseen batches are similar enough to training batches such that the
content encoder can appropriately embed slices from unseen batches,
the model can be easily extended to these settings.

StyleMapper also takes advantage of the ability to apply various im-
age transformation functions to raw images in order to generate images
that are known to have the same content but different styles (Cao et al.,
2022). In this approach, each raw image is transformed to seven differ-
ent styles using the following transformation functions: original, nega-
tive, logarithmic, gamma transformation, piecewise linear, Sobel X fil-
ter, and Sobel Y filter. Then, for each iteration, two raw images and
two randomly-sampled corresponding transformed images (both using
the same transformation function) are fed to a model consisting of one
content encoder, one style encoder, and one generator, where the gener-
ator seeks reconstruct an image with desired style using the content and
style representations. Notably, no discriminator is used in the StyleMap-
per model. To constrain this process, a number of loss function compo-
nents are used: reconstruction of both raw images; reconstruction of
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both transformed images; similarity of style representations between
raw images; similarity of style representations between transformed
images; similarity of content representations between raw images and
their corresponding transformed image; and cross-reconstruction, where
swapping content and style representations between across input images
should result in an output image that is similar to the corresponding
“ground-truth” image. Thus, StyleMapper is able to create pseudo-paired
data with the same content but different styles, learn to disentangle con-
tent and style within this dataset, and perform harmonization, given that
differences across batches are somewhat similar to the transformations
used in training.

Finally, HarMOnAE removes batch effects using style transfer within
a standard convolutional autoencoder (Fatania et al., 2022). In this
model, style representations are explicitly defined as the batch covariate
and directly injected into the decoder via adaptive instance normaliza-
tion. To enforce the learning of batch-invariant content representations,
an adversarial loss is imposed on the content representation space.

3.1.6. Batch-unlearning classifiers (Other)

Related to standard harmonization methods, some deep learning
methods have been developed to simultaneously perform harmoniza-
tion and downstream classification tasks, such that classification should
be robust to batch effects (Dinsdale et al., 2021; Hong et al., 2022).
Notably, unlike other harmonization methods described in this review,
these batch-unlearning classifiers do not attempt to produce a harmo-
nized output dataset that can then be used for any generic downstream
analysis.

Dinsdale et al., (2021) proposed a domain-adaptation classifier that
could be used to improve the generalizability of age predictions across
multiple batches where age distributions differed. The three-module net-
work consists of a convolutional feature extractor, a batch discrimina-
tor, and a main task classifier, where the goal of the feature extractor
is to learn a latent space representation of raw images that is useful for
the main task classifier and can simultaneously fool the batch discrimi-
nator. Thus, the feature extractor learns to extract batch-invariant fea-
tures, and the main task classifier learns generalizable decision bound-
aries. Importantly, the batch-unlearning classifier is trained using a sub-
sample of the data where the outcome of interest is balanced across
batches in order to avoid confounding. The authors showed this strat-
egy is especially useful in settings where one batch makes up a large
majority of the dataset and the distribution of the outcome of interest
differs greatly in this batch compared to others. The method also im-
proved performance of age prediction in an unseen batch. Similarly,
Hong et al., (2022) showed a non-convolutional version of this net-
work, which they call scanner-generalization neural network (SGNN),
could be used to improve prediction of general psychopathology factors
(Caspi and Moffitt, 2018) using functional connectivity matrices within
the ABCD study.

3.2. Prospective harmonization

3.2.1. Direct mapping

In specially-curated multi-batch studies where traveling subjects are
available, the “ground truth” batch-specific scans for these subjects are
known under the assumption that all differences between these scans
are entirely due to technical artifacts. This allows for a class of much
more powerful and accurate methods that leverage this unique pairing
of data to learn a mapping from one batch to another. Then, this map-
ping can be applied to unpaired images to remove batch effects, under
the assumption that data from traveling subjects are a representative
sample of those from unpaired subjects. However, despite the benefits of
prospective harmonization methods, datasets where the required trav-
eling subjects are available are expensive to obtain and can be limited
in terms of subjects. Additionally, the assumption that traveling subjects
are representative of all subjects should be verified; traveling subjects
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could, for example, be healthier or wealthier than non-traveling sub-
jects.

Dewey et al., (2019) proposed DeepHarmony, a convolutional U-Net-
based architecture could be applied to 2D patches across multiple con-
trasts from twelve subjects each scanned under each of two batches in
order to directly harmonize the images themselves. In this architecture,
the network attempts to jointly use multiple contrasts (T1-weighted, T2-
weighted, FLAIR, and proton density) from each subject collected under
one protocol. These multiple contrasts are used simultaneously to re-
construct the corresponding contrasts for that subject collected under
another protocol. This “many-to-many” reconstruction approach can be
thought of as allowing for the use of complementary information across
contrasts. Additionally, DeepHarmony slightly modifies the vanilla U-
Net architecture such that, in the final convolutional layer, the input
contrasts are concatenated to the final feature map. Thus, instead of hav-
ing to recreate reference contrasts entirely from scratch, the network can
instead focus on learning an appropriate transform of the input data to
reconstruct the intended output. Finally, as with CALAMITI, DeepHar-
mony sought to learn three independent image-to-image mappings for
slices in each of the axial, sagittal, and coronal directions. These “direc-
tional” images are then aggregated using voxel-wise medians to produce
a final harmonized image.

For diffusion imaging, Tong et al., (2020) showed that deep learn-
ing can be applied to pre-processed DWI images across traveling sub-
jects in order to estimate derived diffusional kurtosis imaging (DKI)
measures that are harmonized across batches. This study leveraged a
3D hierarchical-structured convolutional neural network (H-CNN) de-
signed to take 3 x 3 x 3 voxel patches as input and jointly produce
eight scalar DKI measures as output (axial diffusivity, radial diffusivity,
mean diffusivity, fractional anisotropy, axial kurtosis, radial kurtosis,
mean kurtosis, kurtosis fractional anisotropy) (Li et al., 2019). To per-
form harmonization, Tong et al. used DWI images from traveling sub-
jects in the reference batch to calculate DKI measures for each image
using an iteratively-reweighted linear least squares method. Then, these
DKI measures were non-linearly registered to corresponding paired DWI
images in source batches to create a training dataset, where the input
is a DWI image from a source batch while the output is the set of DKI
measures extracted from the paired image in the reference batch. Next,
H-CNN is trained on this dataset in order to learn a mapping from source
batch DWI images to reference batch DKI measures. Finally, this trained
H-CNN was applied to other DWI images from the source batches in
order to estimate DKI measures harmonized to the reference batch.

3.2.2. Content-style disentanglement

Another approach for directly harmonizing images, Multi-scanner
Image harmonization via Structure Preserving Embedding Learning
(MISPEL), was introduced by Torbati et al., (2022). Unlike DeepHar-
mony, MISPEL hopes to perform harmonization across m batches, where
m can be more than two, through the use of a set of m batch-specific
convolutional autoencoders that are trained via a two-step algorithm.
Importantly, the encoders are allowed to be deep networks while the
decoders merely perform a linear combination of the latent-space rep-
resentations. In step one, MISPEL seeks to train each batch-specific en-
coder to embed slices from its batch into a common latent space and
then train the corresponding decoder to use those latent-space represen-
tations to reconstruct slices in the style of its batch. To do so, MISPEL
trains each batch-specific autoencoder separately in a self-supervised
fashion using a reconstruction loss and additionally enforces a common
latent space between all autoencoders through a representation simi-
larity loss, which penalizes high variance across all latent-space repre-
sentations. In step two, all encoders are frozen and only the decoders
are updated such that all decoders produce similar harmonized output
slices and the outputs are also similar to the input slice. Thus, intuitively,
MISPEL can be thought of as disentangling images into content and style
representations, where the latent-space representations contain content
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information and differences in how those representations are linearly
combined by the decoder describe style differences.

Tian et al., (2022) address the setting of paired data in a multiple-
batch setting via their model, DeRed. This model can be thought of as
an adaptation of CycleGAN and especially ST-cGAN, discussed in the
style-conditional GAN section. Similarly to ST-cGAN, DeRed uses paired
GANSs to perform harmonization — however, to adapt the paired-GAN
framework to the multiple-batch setting, DeRed trains a separate style
encoder and generator for each batch-to-batch harmonization task, such
that each set of networks harmonizes images either to or from the ref-
erence batch. Then, DeRed is able to harmonize any batch to the ref-
erence batch by combining a source-batch content representation with
a reference-batch style representation. Additionally, harmonization to
any source batch can be achieved through a two-step process, where
all other source batches are first harmonized to the reference batch and
then these generated reference-batch images are harmonized to the de-
sired source batch. Data from paired subjects is taken advantage of in
the loss function, which consists of four components: 1) batch consis-
tency, where style representations should be similar within each batch;
2) content consistency, where content representations should be simi-
lar within paired subjects even from different batches; 3) reconstruction,
where content and style representations from the same image should re-
sult in reconstruction of that image; and 4) cross-reconstruction, where
content and style representations from different images of the same sub-
ject should result in reconstruction of the image that corresponds to the
style representation.

4. Evaluation metrics

Increasing interest in the development and application of harmoniza-
tion methods requires standardized and effective metrics that quantify
performance. Harmonization evaluation metrics can largely be grouped
into two categories, harmonization performance metrics and predictive
performance metrics (Figure 4). Harmonization performance metrics
aim to detect or quantify batch effects and can be separated into met-
rics measured at the feature level and at the image level. These metrics
can often be interpreted as summary statistics, requiring accompany-
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ing visualizations to complement their findings. Predictive performance
metrics measure the effects of harmonization on performance in down-
stream analyses. Importantly, effective harmonization methods should
reduce detectable batch effects in the data while preserving performance
in downstream analyses.

4.1. Harmonization performance

4.1.1. Feature-level metrics

Evaluation approaches for methods that perform feature-level har-
monization can be broadly grouped into four general paradigms: sta-
tistical testing for differences in distribution across batches, predictive
modeling of batch, assessing feature dispersion and similarity, and qual-
itative visualization.

Features can be interpreted as each having their own distribution
that can be split along batch variables such that in the absence of
batch effects, these sub-distributions should be identical. Harmoniza-
tion methods can thus be evaluated based on their ability to remove
differences in feature distribution across batch groups. This can be eval-
uated using statistical testing, where the test used depends on the as-
sumed form of the distributional differences. Location effects can be
assessed using tests for differences in mean (e.g. students and paired t-
tests, ANOVA, linear regression to control for covariates, Wilcoxon rank-
sum and signed rank tests, and Kruskal-Wallis test) while scale effects
can be detected using tests for differences in variance (e.g. Bartlett’s
sphericity test) (Fortin et al., 2018; Y. Li et al., 2021; Wengler et al.,
2021; Yu et al., 2018). To test for more general differences in dis-
tribution beyond disparity in mean and variance, the Kolmogorov-
Smirnov or Anderson-Darling tests can be used (Da-Ano et al., 2020a;
Fatania et al., 2022; H.M. Whitney et al., 2020). These tests are all
completed at the feature-level such that if harmonization is effective,
significant differences in distribution due to batch will be detected be-
fore but not after harmonization. This result would indicate that the
harmonization tool has removed differences in distribution associated
with batch variables. In settings where a p-value would be inappro-
priate, effect size measures (e.g. Cohen’s d, Hedge’s g) can be used
(Radua et al., 2020; Reardon et al., 2021). In the specific setting of
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functional connectivity matrices, which can be studied from the net-
work theory perspective, Roffet et al., (2022) demonstrated the utility
of the Kruskal-Wallis test on batch-wise differences between Normalized
Network Shannon Entropy and Normalized Network Fisher Information
metrics.

If biological covariates are imbalanced across batches, it may be ex-
pected that this imbalance may lead to differences in marginal batch-
wise feature means that should not be corrected by harmonization.
In these settings, it is instead important to evaluate harmonized out-
puts for differences in biological-covariate-conditional batch-wise fea-
ture means. One common approach is to use linear regression or linear
mixed effects regression, where batch and biological covariates (e.g. age,
sex) are used to jointly model the feature. The estimated regression co-
efficients for batch and biological covariates can be tested for signifi-
cant effects on each feature, where a significant regression coefficient
for the batch covariate corresponds to statistically-detectable batch ef-
fects (Badhwar et al., 2020; Bell et al., 2022; Wengler et al., 2021;
Zavaliangos-Petropulu et al., 2019). Notably, this approach will provide
a valid assessment of batch effects even if the biological covariates are
not imbalanced across batches. Looking beyond batch, this evaluation
procedure allows for simultaneous assessment of preservation of biolog-
ical covariates; comparing regression coefficients for biological covari-
ates before and after harmonization can provide insight into whether
biological information is preserved.

Another approach uses features as predictors in a machine learning
classifier — random forests, support vector machines (SVM), AdaBoost,
and others - in order to predict batch as an outcome. If harmonization is
effective, there will be reduced signal from batch in the data and there-
fore reduced classifier performance (An et al., 2022; A. A. Chen et al.,
2022a; Saponaro et al., 2022). While this approach is more general than
using a linear model, this comes at the cost of interpretability. When us-
ing a statistical test for differences in distribution or on linear model
regression coefficients, there is a clear null hypothesis about the nature
of batch effects — that is, whether they are differences in mean, variance,
or distribution. This is contrasts with the machine learning classifier ap-
proach, where detection of batch effects is easy, but understanding the
nature of these detected batch effects is challenging. While there are
methods for measuring feature importance for machine learning classi-
fiers, further visualization is necessary to fully characterize batch effects.
Additionally, it is challenging to account for confounders when using
this machine learning approach; for example, if there is significant im-
balance in a biological covariate such that batch can be easily predicted
by this biological covariate, preservation of biological information in
the harmonized data would also result in predictability of batch, even
if batch effects were perfectly removed.

A more direct metric for identifying variation associated with batch
in feature-level data is the coefficient of variation (CoV). The CoV is
the ratio of the mean to the standard deviation and can be used to mea-
sure between-batch variability by calculating the CoV within each batch
for each feature (Cai et al., 2021; Garcia-Dias et al., 2020; Treit et al.,
2022). The resulting set of CoV values is then described using summary
statistics, and if harmonization is effective, the differences in CoV dis-
tributions between batch groups will be reduced post-harmonization.

In traveling subject studies or other datasets where matched-subject
data is available, another direct metric for measuring feature similarity
across batches is correlation coefficients, including the intra-class corre-
lation coefficient (ICC), Spearman’s correlation, and Pearson’s correla-
tion. If batch effects are not present in the data, then a feature extracted
from scans associated with the same subject under different acquisi-
tion protocols should be more similar across protocols (Crombé et al.,
2021; A. 2020; Kurokawa et al., 2021). Effective harmonization tools
should increase the correlation coefficient for a given feature across
batch groups provided the scans are from the same subject. Addition-
ally, the discriminability statistic may also be a reasonable metric for
this data setting, though this statistic has not yet been used in the con-
text of harmonization (Bridgeford et al., 2021).
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Finally, visualizations are an essential tool for characterizing batch
effects more comprehensively than summary metrics. Visualization
methods pertinent to harmonization can be broadly grouped into
decomposition-based approaches and displays of feature distributions.
Decomposition-based approaches condense high-dimensional data into
a two to three-dimensional space suitable for visualization and include
methods such as principal components analysis (PCA), t-distributed
stochastic neighbor embedding (t-SNE), and uniform manifold approxi-
mation and projection (UMAP). In low-dimensional space, batch effects
can be seen as increased distances between points of differing batch
groups. Harmonization should reduce these distances and bring points of
different batch closer together (Acquitter et al., 2022; A. A. Chen et al.,
2022¢; Guan et al., 2021).

However, decomposition-based methods condense information from
all features into a single figure, necessitating visualizations of univari-
ate or bivariate feature distributions to further characterize distribu-
tional differences affiliated with batch (e.g. feature density plots, box-
plots, scatterplots etc.). Effective harmonization should reduce visual
differences in distribution across batch groups (Bethlehem et al., 2022;
Clarke et al., 2020; Da-Ano et al., 2021; Saint Martin et al., 2021). These
visualizations can also be used to identify cases in which distributional
assumptions of model-based methods are violated (e.g. non-Gaussian for
ComBat) and further troubleshoot harmonization methods by providing
comprehensive information regarding the effects of harmonization on
feature distributions (Horng et al., 2022b).

4.1.2. Image-level metrics

Applications of deep learning to harmonize image-level data have
emerged as promising approaches for correcting unstructured data. Con-
sequently, their evaluation requires metrics that quantify the effects of
harmonization at the image level. Because the goal of image-level har-
monization can be viewed as mapping an image from one batch to an-
other, the resulting evaluation is often based around measuring the dis-
tance between images of different batches.

When paired data are available, this distance can be directly quan-
tified as the voxel-level difference between the harmonized image and
the true image from the reference batch using metrics such as Mean Ab-
solute Error (MAE) or Mean Squared Error (MSE). Also included in this
category is peak signal to noise ratio (PSNR), a measure of image qual-
ity that takes the ratio of the maximum image value and the root MSE.
For example, Dewey et al., (2019) use the MAE as a component of their
loss function as well as a final measure of image similarity to compare
paired images from the same subject scanned with different MRI acqui-
sition protocols. While this approach likely provides the most accurate
quantification of image differences associated with batch, it is not as
commonly used because datasets of sufficient sample size to train deep
learning algorithms that also contain paired samples from each batch
are rare. A possible solution to this problem is to use unpaired data for
training and use a more limited paired dataset for testing and evaluation
(Denck et al., 2021).

The scenario of unpaired data is more common, but this setting re-
quires more indirect measures of image similarity because no “ground
truth” is available. The two most common metrics used in this context
are the structural similarity index measure (SSIM) and Fréchet Incep-
tion Distance (FID) (Heusel et al., 2018; Wang et al., 2004). SSIM, as
the name implies, measures the degree to which structures are preserved
post-transformation. While historically used in paired data, SSIM can be
applied in unpaired data under the assumption that key structures are
largely the same between subjects. FID is a common evaluation metric
for GANs that measures the distance between the ground truth and gen-
erated image distributions as opposed to the images themselves. Both
FID and SSIM have been employed in the evaluation of adversarial net-
works used for image-level harmonization (Liu et al., 2021; Sinha et al.,
2021). Notably, while SSIM measures presence of similar anatomy and
FID measures “realism” of generated images — both important metrics
for assessing the quality of generated images — neither explicitly evalu-
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ates whether generated images match the distribution of the reference
batch or how well the images are harmonized. Additionally, FID is based
on features learned on natural scenes from the ImageNet database; such
features may not be applicable to medical images, so FID may not be a
reliable measure of realism in this setting (Deng et al., 2009).

Finally, qualitative visualizations may include side-by-side image
slices representing unharmonized slices, harmonized slices, and refer-
ence slices. Importantly, “directionality” of visualized slices (i.e. axial,
coronal, sagittal) is important, since many image-level methods correct
images at the individual slice level. Thus, visualization using slices in
the same direction as the harmonization as well as slices in different
directions may be revealing.

While these metrics are commonly used in the evaluation of image-
level harmonization, recent work by Ravano et al., (2022) suggests
that image-level metrics are poor indicators of cross-batch consistency
and robustness in downstream analyses. While predictive performance
should not be the sole evaluation metric for harmonization methods,
as will be discussed below, these findings indicate image-level metrics
should be interpreted with caution and that increases in image similarity
do not guarantee improved robustness. Therefore, additional evaluation
may be carried out by extracting select features, such as voxel intensi-
ties or measures of structural characteristics, and assessing feature-level
harmonization performance using the techniques described in the above
section. Evaluation of the distributions of extracted features may also be
useful in assessing for mode collapse, where GAN-based methods and
CVAE-based methods only generate a small subset of the original vari-
ability in harmonized images.

4.2. Downstream analysis performance

For many applications, the primary goal of harmonization is not nec-
essarily to remove batch effects from the data, but instead to improve
robustness or overall performance in some downstream analysis, such
as inference or prediction. Inference tasks tend to be associated with
feature-level data and can be viewed as seeking to precisely estimate
the magnitude and direction of biological effects of interest. These tasks
involve regression of feature-level data on biological covariates, and
successful harmonization is often assessed as removal of batch effects
while statistical power for detecting such biological effects is preserved
but not artificially biased or inflated. Many studies have suggested har-
monization can improve inference when biological covariates are ex-
plicitly controlled for in the model; however, it remains a challenge to
validate such claims as ground-truth biological effects are unavailable
in real data, and simulation of realistic batch-confounded data is un-
solved (An et al., 2022; A. A. Chen et al., 2022a; Fortin et al., 2018;
Yu et al., 2018). Additionally, it is important to keep in mind that, in
cases where batch status and biological effects are highly correlated,
unbiased removal of true batch effect may correctly reduce observed
biological effects.

In the harmonization literature, post-harmonization prediction eval-
uation can be broadly grouped into three major categories: segmenta-
tion, classification, and regression. Segmentation involves the separa-
tion of regions of interest (ROIs) from the surrounding anatomy, a task
often affected by the differences in intensity associated with differences
in image acquisition. Segmentation is an essential task for many down-
stream analyses, as the resulting regions can be used in the extraction
of quantitative features for predictive modeling. Many studies have al-
ready demonstrated that image-level harmonization can improve down-
stream segmentation performance (Dewey et al., 2019; Dinsdale et al.,
2021; He et al., 2021; B. Li et al., 2021; Shao et al., 2022). The perfor-
mance of segmentation algorithms can be quantified using metrics such
as the Dice coefficient, Mean Surface Distance (MSD), Hausdorff dis-
tance, and others. Classification and regression use a matrix of quantita-
tive features to predict discrete and continuous outcomes, respectively.
In these contexts, batch effects may introduce additional noise that can
obscure signal, result in models that learn batch-confounded parame-
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ters, as well as induce overfitting that reduces the ability of models to
generalize to unseen data from other batches. To this end, many studies
have applied harmonization techniques to demonstrate improved pre-
dictive performance and model robustness in the prediction of a vari-
ety of outcomes, including malignancy, age, survival, neurodegenerative
disease, and more (Fortin et al., 2018; Tixier et al., 2021; H.M. Whit-
ney et al., 2020; Zavaliangos-Petropulu et al., 2019). Classification per-
formance is typically evaluated using metrics such as accuracy, sensi-
tivity, specificity, and area under receiver operating curve (AUROC)
(Ingalhalikar et al., 2021; Sinha et al., 2021; Whitney et al., 2021). Eval-
uation for regression methods involves measuring the distance between
the observed and predicted outcome vectors using metrics such as mean
squared error (MSE), root mean squared error (RMSE), and mean abso-
lute error (MAE) (Bashyam et al., 2022; Chen et al., 2020).

4.2.1. Accounting for confounders

Notably, evaluation of harmonization performance and downstream
analysis performance in the presence of confounding by biological co-
variates of interest remains an active challenge. Depending on the
strength and nature of such confounding, naive application of the above
evaluation metrics may incorrectly show harmonization is performing
poorly even if it is working perfectly, or incorrectly show harmoniza-
tion is performing well even if it is working poorly. The same is true for
downstream analyses.

For example, imbalance of biological covariates across batches may
result in seemingly poor harmonization performance even in the setting
of theoretically-perfect batch effect removal. In imbalanced datasets, bi-
ological information will and should remain correlated with batch sta-
tus after harmonization. Therefore, accurate preservation of biological
information will result in marginal differences in imaging data across
batches that will be detectable by statistical and machine learning meth-
ods that do not condition on these covariates. Notably, even evalua-
tion approaches that do condition on biological covariates, such as lin-
ear regression, may provide inaccurate conclusions if the model is mis-
specified with respect to the relationship between biological covariates,
batch, and the imaging data.

In the opposite direction, imbalance of biological covariates may also
induce incorrect removal of biological information that the harmoniza-
tion method views as batch effects. For example, if age is imbalanced
across batches but not appropriately accounted for by the harmoniza-
tion methods, age-related differences between batches that should be
preserved will instead be attributed to batch effects and removed. Addi-
tionally, in this setting, naive approaches for evaluating harmonization
performance will incorrectly show the harmonization method is per-
forming well, since marginal batch-wise differences may be removed
when they should be preserved.

While downstream analysis performance is a key priority in the
wider imaging community, it is critical to distinguish this performance
from the specific goal of harmonization: the removal of batch effects
from data. Evaluating within-sample performance does not provide ex-
plicit information regarding harmonization performance, nor vice versa,
particularly in settings where biological and batch variables are associ-
ated (Dinsdale et al., 2021; Horng et al., 2022a).

For example, consider a hypothetical study in which most patients
with a cancer diagnosis are imaged at a tertiary referral hospital, while
most patients without a cancer diagnosis are imaged at a primary care
hospital. Because of this imbalance, the batch variable of hospital type
becomes highly associated with the outcome of cancer diagnosis. In this
setting, a theoretically-perfect harmonization method will eliminate this
association, therefore resulting in reduced within-sample performance.
In a different example, if there is minimal confounding between batch
status and an outcome of interest, removal of batch-related noise may
increase the relative signal of the outcome of interest, and within-sample
performance may improve.

While harmonization is not guaranteed to improve overall predic-
tive performance, the removal of batch effects can result in increased
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predictive model robustness and generalizability. This can be evaluated
by measuring predictive performance on out-of-sample testing data in
the harmonized output space. For example, such external validation has
been applied as test-retest analyses (Mirzaalian et al., 2016; van de Bank
et al., 2015), out-of-sample cross-validation procedures (Dinsdale et al.,
2021), or true out-of-sample test datasets (Chang et al., 2022; Liu et al.,
2020; Shao et al., 2022). Improved performance on external, out-of-
sample data would indicate that a predictive model trained on harmo-
nized data is more robust to differences in image acquisition and is over-
fitting less on batch-related noise.

5. Discussion
5.1. Recommendations for end-users

Image harmonization methods have been proposed for a wide variety
of data structures and study designs. Optimal selection of the state-of-
the-art harmonization method for each study is thus highly dependent
on these characteristics as well as on the ease-of-use of available meth-
ods. In this section, we provide our recommendations to users seeking
to apply existing harmonization methods to their own datasets in order
to best reduce bias and improve generalizability of results.

Generally, for both feature-level and image-level data, we recom-
mend that image harmonization should be used as a final correction
step. That is, raw imaging data should first be pre-processed using avail-
able non-harmonization methods designed to minimize technical arti-
facts, including bias field correction (Tustison et al., 2010), intensity
normalization (Shinohara et al., 2014), and if applicable, other steps
like brain extraction (Smith, 2002), registration to a common template
(Avants et al., 2008). In the setting of functional MRI, additional pre-
processing steps should also be used, if necessary, such as motion cor-
rection (Ciric et al., 2017; Jenkinson et al., 2002) or spatial smooth-
ing (Mikl et al., 2008). Notably, small differences in both functional
and structural pre-processing pipelines can induce marked variation in
downstream analyses (Cetin-Karayumak et al., 2020b). Consensus as to
how to perform such pre-processing is critical in multi-batch studies if
pre-processing is conducted independently within sites (Li et al., 2022).
Finally, once all standard pre-processing steps have been implemented
in order to reduce technical noise, remaining batch effects can be ad-
dressed via harmonization.

For feature-level data from studies without traveling subjects, Com-
Bat and its various extensions should still be considered state-of-the-art
despite recent advances in deep learning methods. Specifically, Cov-
Bat is a strong choice when batch effects are suspected in the covari-
ance structure of the linear model residuals (A. A. Chen et al., 2022a),
ComBat-GAM should be used when non-linear covariate or batch ef-
fects may be at play (Pomponio et al., 2020), and FC-CovBat is recom-
mended for the specific application to functional connectivity values (A.
A. Chen et al., 2022c). In datasets where at least one batch has a small
sample size, the standard ComBat model likely outcompetes more com-
plex methods - in these settings, estimation of higher-order biological
and batch effects may be imprecise and reduce harmonization perfor-
mance (Fortin et al., 2017; Nygaard et al., 2016; Zindler et al., 2020).
In these settings, the principal component decomposition step of CovBat
and the GAM estimation step of ComBat-GAM may be highly variable
and therefore unreliable. For study designs with longitudinal data and
therefore non-independent observations, Longitudinal ComBat should
be used (Beer et al., 2020). In the presence of privacy-preserving con-
straints, D-ComBat yields equivalent results as standard ComBat with-
out the need to have the full dataset at a single location (Bostami et al.,
2022b; A. A. Chen et al., 2022b).

While it is unlikely that batch effects are perfectly modeled in these
ComBat-style methods, these methods have been extensively validated
in many datasets and data types including cortical thicknesses, fractional
anisotropy values, functional connectivity values, and radiomic features.
Even in the setting of data types that have not been previously validated,
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ComBat-style methods can be applied reliably; they perform principled
model-based correction with minimal risk of overfitting and tend to err
on the side of under-correction rather than over-correction. For multi-
site studies with small sample sizes, the simplicity of these models and
the empirical Bayes estimation procedure allow for stable correction in
settings where more sophisticated correction would be infeasible. Im-
portantly, these methods also provide easy-to-use open-source code in
R, Python, or both. However, because of the simplicity of these mod-
els, substantial multivariate batch effects will remain following correc-
tion, and model misspecification poses the potential for bias and in-
creased false positives. While CVAE-based methods have been proposed
for feature-level correction, such as Moyer et al., (2020) and gcVAE
(An et al., 2022), these methods still require users to have considerable
deep learning experience for hyperparameter tuning and evaluation, and
the behavior has not yet been extensively validated by follow-up studies
in different datasets or data types.

For feature-level data in the prospective setting where matched pairs
are available, TS-GLM and Longitudinal ComBat have strong theoretical
foundations in the linear model and random effects model framework,
respectively (Beer et al., 2020; Yamashita et al., 2019). While TS-GLM
has been used more often in this setting, Longitudinal ComBat is the-
oretically advantageous as this model can jointly use both paired and
unpaired data in the estimation of batch effects.

For image-level harmonization, while ComBat-style methods can be
applied on the voxel level, where subjects are registered to each other
and represented by vectorized voxel intensities, ComBat is almost cer-
tainly inadequate. In this setting, deep learning methods are a much
more reasonable choice. However, while image-level harmonization is
almost certainly the ultimate goal for the field of harmonization, given
the current state of the field, we recommend that, if possible, end-users
should avoid image-level harmonization and instead seek to extract rel-
evant features from the images and apply feature-level methods. This
is because image-level methods have only been evaluated under ideal
settings, require extensive deep learning expertise and computational
capacity, and may introduce bias in datasets where biological covari-
ates confounders are present. These limitations are discussed in more
depth below.

If image-level harmonization is necessary and unavoidable, we rec-
ommend the following methods. In studies where individuals are im-
aged under at least two modalities on the same scanner but no travel-
ing subjects are used, CALAMITI has an elegant theoretical basis, has
been validated in a few follow-up studies, and most importantly, pro-
vides readily-available code (Zuo et al., 2021). In the prospective set-
ting, MISPEL should be considered, as it provides open-source code and
has been internally validated to improve harmonization both in terms
of images and image-extracted features when compared to a matched-
pairs-aware version of CALAMITI; however, no follow-up studies have
yet externally validated this model (Torbati et al., 2022). While many
CycleGAN-based methods have been proposed and assessed, we do not
recommend these methods. This is because the CycleGAN architecture is
known to be under-constrained which could lead to potential anatom-
ical distortions; GAN models can be challenging to train; and to our
knowledge, no open-access code is available for proposed adaptations
of the architecture or loss functions.

Despite the potential that CALAMITI and other deep learning meth-
ods have shown in correcting image-level data, we believe these meth-
ods are not yet ready for end-users to apply to their own imaging
data. Firstly, from the resource perspective, this is partly due to the
immense computational resources required for training and the exten-
sive technical expertise necessary to troubleshoot code and perform hy-
perparameter tuning. Additionally, deep learning methods require that
end-users thoroughly validate harmonization results — the flexibility of
these networks can result in unexpected behavior that may break down
in certain unknown settings. Secondly, from the technical perspective,
since training these deep learning models require large sample sizes
and three-dimensional convolutional models are computationally pro-
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hibitive, deep learning methods treat each axial slice as an indepen-
dent sample, even when slices are from the same subject or from nearby
planes; this process does not explicitly model the correlation between
these slices and hopes the model can implicitly pick up on these relation-
ships. Thirdly, while these methods have been shown to work well in
their respective published manuscripts, limited follow-up studies have
been published to validate these results in other datasets, so it is un-
certain if the results are easily generalizable. Finally, for most studies,
harmonization was also only validated in the image domain with the
implicit assumption that, if the image is harmonized, then extracted
features from these harmonized images will also be subsequently har-
monized; explicit evaluation of whether this assumption holds will be
important to strengthen the case for using these methods.

Across data types and study design settings, once a reasonable har-
monization method is applied, the resulting harmonized dataset can be
evaluated for harmonization performance and predictive performance.
Evaluation for harmonization performance is especially important for
more complex methods that are sensitive to changes in user-defined hy-
perparameters, as these methods may underperform if the hyperparam-
eters not tuned appropriately. Note that such methods include CovBat
and ComBat-GAM, since they require the specification of the number of
principal components to correct and the standard GAM hyperparame-
ters, respectively.

End-users can also evaluate harmonization methods based on predic-
tive performance, especially on out-of-sample data, such as that gener-
ated using cross-validation, train-test splits, or test-retest data. Effective
harmonization should improve the generalizability of prediction mod-
els, so predictive performance on out-of-sample data may increase. How-
ever, end-users should be aware that predictive performance may de-
crease in training sample data, especially if batch status was correlated
with the outcome of interest. Additionally, large increases in predictive
performance might be observed if the harmonization method acciden-
tally introduces biases or artifacts — end-users should be especially aware
of this possibility if using less-constrained methods such as GAN-based
models.

5.2. Limitations of harmonization

Importantly, end-users should be aware of two limitations of harmo-
nization — namely, that removal of batch effects induces correlation be-
tween subjects and that removal of batch effects and preservation of bi-
ological effects depends on the ability to precisely estimate these effects
(Bayer et al., 2022a; T. Li et al., 2021; Nygaard et al., 2016; Zindler et al.,
2020). The studies below specifically describe these limitations within
the context of the ComBat model, since this model is easily used and has
been widely studied in the field of genomics for over a decade; however,
these limitations are broadly true of any harmonization method.

Firstly, harmonization is used as a pre-processing step, where batch
effects are estimated using the whole dataset under some model, and
subsequently removed. The harmonized output is then used for any
downstream inference or prediction analyses. This separation of har-
monization from downstream analyses is advantageous — under this
paradigm, harmonization methods can be as complex as necessary to
adequately remove batch effects, and any downstream analysis model
can be used afterwards. This contrasts with joint methods for inference
that account for batch effects. For example, multiple linear regression
where batch status is included as a covariate is a simple joint method;
however, in this model, batch effects can only be accounted for as dif-
ferences in expected mean, and the only downstream analysis possible
is inference on the linear effect of biological covariates of interest.

However, separation of harmonization from downstream analyses
also induces artificial correlation between originally-independent sub-
jects (T. Li et al., 2021). This is because batch effects are estimated us-
ing all subjects in the dataset, and then this estimated batch effect is
removed from each subject’s data. As a result, each harmonized data
point is some function of all the other data in the dataset and therefore
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correlated with each other. This limitation could lead to exaggerated or
reduced findings in downstream analyses that do not account for this
induced correlation. Li et al. provide a potential solution to this prob-
lem in the context of ComBat through their approach, ComBat+Cor.
This model applies standard Combat for harmonization, but accounts
for the induced correlation in downstream linear models. Notably, this
approach would not be useful for downstream analyses that cannot ac-
count for sample correlation (i.e. machine learning models, qualitative
visualizations, etc.), and ComBat+Cor has only been validated in the ge-
nomics context. Additionally, Li et al. noted that ComBat+Cor was too
conservative in settings with large variance batch effects, which may
be common in neuroimaging data; in these settings, they recommended
standard ComBat instead.

Secondly, harmonization methods may inaccurately remove batch
effects in settings where it is challenging to accurately estimate batch ef-
fects (Nygaard et al., 2016; Zindler et al., 2020). For example, in datasets
where biological covariates are heavily imbalanced across batches, there
will be insufficient overlap of these biological covariates to indepen-
dently estimate batch and biological effects. Instead, batch and biology
can be thought to be a form of “multicollinear” which will result in un-
stable estimation for both batch and biological effects (Nygaard et al.,
2016). Similar estimation issues occur in datasets with a large number
of batches and a small number of subjects within each batch, as well as
in settings where batch effects are extremely small or non-existent such
that they are easily overfit (Zindler et al., 2020). In all these settings,
harmonization will be carried out using only the point estimate for batch
effects; the large estimation errors for batch effects will be ignored. If
the magnitude of the original batch effects is greater than that of the
estimation errors, harmonization may partially ameliorate the batch
effects problem, but if the reverse is true, harmonization may make
things worse. Additionally, when considered together, the combination
of harmonization-induced correlation and inaccurately-estimated batch
effects may result in increased false positives.

Ultimately, while it is important for end-users to be aware of these
issues with harmonization as a whole, we still consider harmonization
to be the state-of-the-art approach for addressing batch effects, since no
better solution exists for removing complex batch effects while allowing
the flexibility of using any downstream methods. However, end-users
should exercise care to avoid blindly applying harmonization methods
in settings where batch effects cannot be precisely estimated to reduce
the risk of false positives. In these settings, end-users should reach for al-
ternative approaches, such as joint methods for inference that account
for batch effects, or consider consultation with neuroimaging statisti-
cians. Harmonization-induced correlation is more challenging to avoid
or take into account, but we believe that the increased generalizabil-
ity of post-harmonization analyses outweighs the risk of exaggerated or
diminished findings due to correlation-induced bias.

5.3. Recommendations for methodologists

As methodologists continue to propose novel ideas to improve both
feature and image-level harmonization, we provide recommendations
for a more standardized framework for describing evaluating, compar-
ing, and releasing novel methods that we believe will help accelerate
the advancement of the field.

5.3.1. Transparency in assumptions and limitations

Firstly, new methods should be explicit about the specific scenar-
ios under which the method is intended to work, since use, evaluation,
and comparison to similar methods all depend on the scenario. To do
so, methods should define assumptions made about the data-generating
process as well as describe assumptions about the availability of var-
ious information in their dataset. The need for such transparency be-
comes clearer when harmonization is viewed as causal inference prob-
lem. Under the causal inference framework, different batches are dif-
ferent “treatments,” unharmonized data are “observed outcomes” un-
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der these treatments, and harmonization methods attempt to estimate
“counterfactual outcomes” at the individual level — what the data would
have looked like in a hypothetical scenario where all subjects were
scanned in the same batch (Hofler, 2005; Rosenbaum and Rubin, 1983;
Rothman et al., 2008). Notably, such estimation requires strong assump-
tions that may be relevant when end-users decide which harmonization
method may be most reasonable for their dataset.

As an example of a common implicit assumption, prospective meth-
ods are defined by the assumption of paired data across batches; how-
ever, they also assume variation within pairs is entirely due to batch
effects and that the batch effects estimated using this paired data is rep-
resentative of batch effects in the rest of the sample. While such assump-
tions may be reasonable in some datasets, they may be unreasonable in
others. The first assumption is violated if paired scans across batches
are taken with a larger interval of time in between, since differences
between scans may be due to changes in age or disease progression in
addition to batch effects. The second assumption is violated if travel-
ing subjects tend to be more able or willing to travel than non-traveling
subjects, perhaps due to relatively younger age or better health. In this
setting, if covariates that affect tendency to be a traveling subject also
affect brain structure or function, estimation of batch effects in these
traveling subjects may be non-representative.

In retrospective studies, these assumptions on paired data are not
necessary. However, these methods instead make assumptions on the
nature of batch effects and how confounders are controlled for. For ex-
ample, ComBat relies heavily on an assumption of correct model speci-
fication; that is, batch effects can be fully captured by univariate shifts
in mean and rescaling of error terms and that biological effects are con-
founders that can be controlled for linearly. Meanwhile, deep learning
methods make minimal model specification assumptions, but data-based
assumptions are encoded in model parameters based on biases present
in the training data. For example, when deep learning methods do not
account for biological covariates when performing harmonization; im-
plicitly, they assume that batch status is independent of biological co-
variates. This may not be reasonable if, for example, sicker subjects tend
to be scanned at tertiary care hospitals while healthier patients tend to
be scanned in primary care hospitals. Thus, transparency in assumptions
about confounders is necessary in understanding when methods can be
applied.

Transparency of methods known to require more computational
power, higher technical expertise, or larger sample sizes is also rec-
ommended. While harmonization methodologists may prioritize imple-
menting interesting ideas to advance the field and improve our ability to
remove batch effects, end-users may place less emphasis on using such
“optimal” methods and instead look to apply methods that are more
accessible yet still perform acceptably. Thus, methodologists should in-
clude a discussion of computational resources required, approximate run
times, and approximate empirical lower bounds for sample size required
so that subsequent readers can have a better sense of when/if the method
is usable in their settings.

5.3.2. Standardized evaluation framework

Secondly, methods should be explicitly evaluated both in terms of
removal of batch effects as well as preservation of biological effects. In
feature-level data, evaluation of batch effects should consist of statisti-
cal testing for difference in means for individual features, prediction of
batch using machine learning classifiers, and qualitative visualization
of feature distributions using dimension reduction techniques as well
as univariate and bivariate plotting. For statistical testing, we recom-
mend use of the linear model, where batch and confounding covariates
are the independent variables and feature data is the dependent vari-
able, in order to estimate the mean batch effects when confounders are
controlled for. For batch prediction, we recommend random forests or
support vector machines as powerful multivariate methods that are easy
to apply and robust to hyperparameter tuning. For qualitative visualiza-
tion, we recommend UMAP or PCA for multivariate visualization, uni-
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variate/bivariate density plots across batches for a small number of ran-
domly selected features, and scatterplots of unharmonized data against
harmonized data for a small number of randomly selected features.

Evaluation of preservation of biological effects should be tested by
choosing a few biological effects that may be of interest to end-users
and using them as the covariate or outcome of interest in the above
analyses. Note that in batch effects evaluation, less evidence of batch
effects is desired, while in biological effects evaluation, more evidence
of biological effects is better. For both batch effects and biological effects
evaluation, additional evaluation can be added as appropriate, including
other metrics highlighted in Figure 4. For example, if the primary goal of
the harmonization method is to use a reference batch-trained prediction
algorithm on source-batch data, improvement in test time performance
of this prediction algorithm should be included as part of the evaluation.
For all metrics, baseline comparison of outputs should be made to those
from unharmonized data in addition to one or more previously validated
methods designed for the same data setting.

To evaluate removal of batch effects in image-level data, we en-
courage the use of both image-level and feature-level metrics to fully
characterize harmonization performance. At the image-level, evaluation
should be conducted through both quantitative image metrics, such as
SSIM and FID, as well as qualitative visualization of several comparable
image slices. In prospective study designs, comparable image slices re-
fer to paired data, and in retrospective designs, they refer to slices from
individuals with similar pertinent covariates. For qualitative visualiza-
tion, we encourage the inclusion of axial, coronal, and sagittal slices for
each of unharmonized, harmonized, and reference images. We recognize
that many harmonization methods on 3D neuroimaging data are limited
to correction of axial slices, small 3D patches, or even individual vox-
els due to constraints in computational power, model complexity, and
sample size, so coronal and sagittal slices may look distorted. However,
we believe it is important to establish a baseline as to the extent and
characteristics of such distortions.

For feature-level evaluation of image-level harmonization methods,
we recommend that methodologists extract a small number of rele-
vant image-derived features from both unharmonized and harmonized
datasets. Then, the full set of metrics described above for evaluating
feature-level harmonization can be applied to assess for effective har-
monization and look out for signs of mode collapse. We argue that while
image-level harmonization should imply harmonization of downstream
extracted features, this may not necessarily be the case in existing meth-
ods due to how challenging it is to estimate and remove batch effects
in images. More thorough characterization of how image-level methods
affect these subsequent features is necessary for methodologists to bet-
ter understand areas for improvement and for end-users to assess the
robustness of these methods.

As we encourage authors of image-level methods to include po-
tentially distorted visualizations or sub-optimal evaluation results on
image-derived features, we simultaneously encourage editors and re-
viewers to ask for such assessments in order to characterize the behavior
of current state-of-the-art methods more comprehensively. Additionally,
we hope these editors and reviewers recognize the immense challenge
of image-level harmonization, and in doing so, publish manuscripts with
interesting ideas or making encouraging progress despite distortions or
bias that may be evident.

5.3.3. Code availability

Thirdly, we encourage methodologists of both image-level and
feature-level methods to provide easy-to-use, open-source code so that
novel harmonization methods can be compared to previously described
methods, applied to real-world problems by neuroscientists, and under-
stood at the code level. The lack of such available code is particularly
evident in deep learning image-level methods, where most methods pro-
vide no code or refer readers to the original codebase the novel method
was based on. Methods that do provide code tend to do so by upload-
ing entire project directories with minimal curation, leaving subsequent
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users to parse through, edit, and re-implement the code themselves. Ide-
ally, both deep learning and statistical methodologists should strive to
write comprehensive tutorials, provide well-organized code, and create
a small number of high-level wrapper functions such that subsequent
users can run the method on their own data with only a few lines of
user-written code. Software engineering principles would also be useful,
including implementation of continuous integration tests, containeriza-
tion of code, and reduction of dependencies.

Such standards are already widespread in similar fields, such as batch
effect correction methods for single-cell RNA sequencing (scRNA-seq)
analyses. In scRNA-seq batch effect correction, most statistical and deep
learning methods have been proposed with the inclusion of easy-to-use
code. As a result, comprehensive reviews have been conducted to assess
method performance across different large datasets, allowing for empiri-
cal quantitative and qualitative comparison (Tran et al., 2020). A similar
ability to comparatively assess a broad range of harmonization methods
and establish a current gold-standard would be hugely impactful for
the field. In application, improved accessibility to proposed harmoniza-
tion methods will allow these methods to now only present interesting
ideas for growth, but also provide useful and applicable methods for
end-users.

Finally, code-level understanding is especially important in deep
learning models. While descriptions of network architecture and theo-
retical loss functions illustrate the main ideas behind a model, there are
numerous ways these design choices, and others, can be implemented.
For example, there are many details that may be unimportant for theo-
retical understanding and therefore excluded from the manuscript text,
but still have large empirical impacts, including: choice of optimizer and
optimizer parameters; hyperparameter-tuning algorithm and hyperpa-
rameter search ranges; minimization of mode collapse risk; and more.

5.3.4. Future work

In retrospective feature-level data, methodologists should seek to
further develop statistical techniques for harmonization. While widely-
used statistical approaches have largely relied on univariate modeling
or strong assumptions about the nature of batch and biological effects,
recently proposed multivariate harmonization methods such as CovBat
and UNIFAC have been shown to greatly improve harmonization. How-
ever, these approaches continue to make strong assumptions and re-
quire more validation. For example, CovBat assumes multivariate batch
effects is present only in the covariance matrix of the residuals while
UNIFAC assumes multivariate batch effects can be estimated as low-
rank latent patterns. Thus, further work in validating such methods as
well as developing novel statistical methods to remove complex multi-
variate, non-linear batch effects in a theoretically-rigorous manner may
be warranted.

Complementary work on applying deep learning methods to feature-
level data is a promising next step, with the hope that an appropriately-
designed neural network may be able to model and remove complex
batch effects in a data-driven manner. In this vein, methods such as
CVAE and gcVAE have been proposed. However, CVAE has been shown
to have the unintended consequence of removing biological effects of
interest along with batch effects. To address this consequence, gcVAE
explicitly rewards the model for retaining biologic effects, which may
introduce bias into the harmonized dataset; this consequence has not
been empirically demonstrated. Additionally, like many image-level
deep learning methods and unlike statistical methods, CVAE and gcVAE
assume the complexity of their neural networks allow for near-perfect
model fit, such that output can be directly treated as harmonized data
without explicit reintroduction or modeling of error terms. Further work
in deep learning harmonization of feature-level data should evaluate the
validity of this assumption and its impact on downstream analyses.

Ultimately, efforts should be made to develop strong methodology
that can easily and robustly perform harmonization on image-level data
across a range of sample sizes, acquisition sequences, and study designs.
To do so, methodologists should consider leveraging both statistical and
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deep learning ideas; statistical methods may allow for improved robust-
ness and strong performance in smaller samples or when confounding is
present, while deep learning models may better capture the complexity
of image-level data, which pose serious challenges to traditional statis-
tics. For all image-level harmonization methods, care must be taken to
characterize harmonization performance both qualitatively and quanti-
tatively, not only at the image level, but also for subsequent features
extracted from these harmonized images; evaluation on extracted fea-
tures is both sensitive and specific for poor harmonization performance,
and performance on extracted features may additionally be of inter-
est to end-users. Again, when reviewing image-level harmonization pa-
pers that include unfavorable results, we encourage editors and review-
ers to note the difficulty of performing harmonization at the image
level.

Finally, more work is necessary in evaluation. Firstly, further devel-
opment of sensitive, covariate-aware multivariate evaluation metrics is
important. While univariate feature-wise regression approaches can de-
tect batch effects conditional on confounding biological covariates; sim-
ilar capabilities of conditioning should be developed or borrowed from
other fields for multivariate machine learning approaches and validated
in the context of harmonization. Additional qualitative and quantitative
image-level metrics suited for retrospective datasets are also necessary
to provide better assessment of image-level harmonization. To support
this effort and demonstrate the validity of these newly proposed metrics
as well as pre-existing ones, progress must be made in developing sim-
ulation studies with realistic batch effects and biologic effects or large
traveling subject cohorts, such that “gold-standard” harmonization can
be known. The availability of these datasets will also allow methodolo-
gists to confirm the behavior of newly developed methods.

Comprehensive comparative analyses of currently proposed harmo-
nization methods under a wide range of data settings would also be
hugely beneficial. In the current literature, novel methods tend to com-
pare their harmonization outputs to a small set of similar methods us-
ing a limited number of evaluation metrics. This leads to challenges
in comparing novel methods with one other and a less complete un-
derstanding of how each harmonization method succeeds or why it
struggles. Thorough quantitative and qualitative comparison will al-
low for end-users to more confidently choose optimal methods and for
methodologists to better focus their efforts on addressing underlying
problems.

Conclusion

In neuroimaging, multi-batch data is increasingly necessary to obtain
sufficient sample sizes and produce generalizable results. Furthermore,
in these settings, end-users are more interested in applying powerful
and flexible models to perform both inference and prediction. To enable
these efforts, removal of batch effects via image harmonization is an
important, but complex, pre-processing step.

In this review, we comprehensively discuss the growing set of statisti-
cal and deep learning image harmonization methods, categorizing these
methods broadly to highlight common themes. We then summarize ap-
proaches for evaluating the effectiveness of harmonization in feature-
level and image-level methods. Finally, we provide recommendations
to neuroscientists and harmonization methodologists. For neuroscien-
tists, we give suggestions on when to perform harmonization and which
harmonization method to choose in each data and study design setting.
We also discuss important limitations of harmonization and the settings
where these limitations may be most relevant. For methodologists, we
highlight critical methodological obstacles, advocate for a standardized
evaluation framework, push for increased transparency in assumptions
and code-availability, and provide guidance on possible future direc-
tions for the field. Overall, we hope these recommendations will allow
for more effective and widespread application of current harmonization
methods as well as accelerated progress towards thorough and precise
removal of batch effects in increasingly complex neuroimaging data.
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